Skip to content

feat: add array/base/mskunary4d #3208

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 9 commits into from
Nov 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
124 changes: 124 additions & 0 deletions lib/node_modules/@stdlib/array/base/mskunary4d/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
<!--

@license Apache-2.0

Copyright (c) 2024 The Stdlib Authors.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

# mskunary4d

> Apply a unary callback to elements in a four-dimensional nested input array according to elements in a four-dimensional nested mask array and assign results to elements in a four-dimensional nested output array.

<section class="intro">

</section>

<!-- /.intro -->

<section class="usage">

## Usage

```javascript
var mskunary4d = require( '@stdlib/array/base/mskunary4d' );
```

#### mskunary4d( arrays, shape, fcn )

Applies a unary callback to elements in a four-dimensional nested input array according to elements in a four-dimensional nested mask array and assigns results to elements in a four-dimensional nested output array.

```javascript
var abs = require( '@stdlib/math/base/special/abs' );

var x = [ [ [ [ -1.0, -2.0 ], [ -3.0, -4.0 ] ] ] ];
var mask = [ [ [ [ 0, 1 ], [ 0, 0 ] ] ] ];

var shape = [ 1, 1, 2, 2 ];

// Compute the absolute values in-place:
mskunary4d( [ x, mask, x ], shape, abs );
// x => [ [ [ [ 1.0, -2.0 ], [ 3.0, 4.0 ] ] ] ]
```

The function accepts the following arguments:

- **arrays**: array-like object containing one input nested array, an input nested mask array, and one output nested array.
- **shape**: array shape.
- **fcn**: unary function to apply.

</section>

<!-- /.usage -->

<section class="notes">

## Notes

- The function assumes that the input and output arrays have the same shape.
- An element in an input array is "masked" if the corresponding element in the mask array is non-zero.

</section>

<!-- /.notes -->

<section class="examples">

## Examples

<!-- eslint no-undef: "error" -->

```javascript
var discreteUniform = require( '@stdlib/random/base/discrete-uniform' ).factory;
var bernoulli = require( '@stdlib/random/base/bernoulli' ).factory;
var filled4dBy = require( '@stdlib/array/base/filled4d-by' );
var zeros4d = require( '@stdlib/array/base/zeros4d' );
var abs = require( '@stdlib/math/base/special/abs' );
var mskunary4d = require( '@stdlib/array/base/mskunary4d' );

var shape = [ 2, 3, 3, 3 ];

var x = filled4dBy( shape, discreteUniform( -100, 100 ) );
console.log( x );

var mask = filled4dBy( shape, bernoulli( 0.5 ) );
console.log( mask );

var y = zeros4d( shape );
console.log( y );

mskunary4d( [ x, mask, y ], shape, abs );
console.log( y );
```

</section>

<!-- /.examples -->

<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->

<section class="related">

</section>

<!-- /.related -->

<!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="links">

</section>

<!-- /.links -->
125 changes: 125 additions & 0 deletions lib/node_modules/@stdlib/array/base/mskunary4d/benchmark/benchmark.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@
/**
* @license Apache-2.0
*
* Copyright (c) 2024 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

'use strict';

// MODULES //

var bench = require( '@stdlib/bench' );
var uniform = require( '@stdlib/random/base/uniform' ).factory;
var bernoulli = require( '@stdlib/random/base/bernoulli' ).factory;
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var floor = require( '@stdlib/math/base/special/floor' );
var identity = require( '@stdlib/math/base/special/identity' );
var filled4dBy = require( '@stdlib/array/base/filled4d-by' );
var zeros4d = require( '@stdlib/array/base/zeros4d' );
var numel = require( '@stdlib/ndarray/base/numel' );
var pkg = require( './../package.json' ).name;
var mskunary4d = require( './../lib' );


// FUNCTIONS //

/**
* Creates a benchmark function.
*
* @private
* @param {PositiveIntegerArray} shape - array shape
* @returns {Function} benchmark function
*/
function createBenchmark( shape ) {
var arrays;
var x;
var m;
var y;

x = filled4dBy( shape, uniform( -100.0, 100.0 ) );
m = filled4dBy( shape, bernoulli( 0.5 ) );
y = zeros4d( shape );

arrays = [ x, m, y ];

return benchmark;

/**
* Benchmark function.
*
* @private
* @param {Benchmark} b - benchmark instance
*/
function benchmark( b ) {
var i0;
var i1;
var i2;
var i3;
var i;

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
mskunary4d( arrays, shape, identity );
i3 = i % shape[ 0 ];
i2 = i % shape[ 1 ];
i1 = i % shape[ 2 ];
i0 = i % shape[ 3 ];
if ( isnan( arrays[ 2 ][ i3 ][ i2 ][ i1 ][ i0 ] ) ) {
b.fail( 'should not return NaN' );
}
}
b.toc();

i3 = i % shape[ 0 ];
i2 = i % shape[ 1 ];
i1 = i % shape[ 2 ];
i0 = i % shape[ 3 ];
if ( isnan( arrays[ 2 ][ i3 ][ i2 ][ i1 ][ i0 ] ) ) {
b.fail( 'should not return NaN' );
}
b.pass( 'benchmark finished' );
b.end();
}
}


// MAIN //

/**
* Main execution sequence.
*
* @private
*/
function main() {
var min;
var max;
var sh;
var N;
var f;
var i;

min = 1; // 10^min
max = 6; // 10^max

for ( i = min; i <= max; i++ ) {
N = floor( pow( pow( 10, i ), 1.0/4.0 ) );
sh = [ N, N, N, N ];
f = createBenchmark( sh );
bench( pkg+'::equidimensional:size='+numel( sh ), f );

Check warning on line 121 in lib/node_modules/@stdlib/array/base/mskunary4d/benchmark/benchmark.js

View workflow job for this annotation

GitHub Actions / Lint Changed Files

Unknown word: "equidimensional"
}
}

main();
34 changes: 34 additions & 0 deletions lib/node_modules/@stdlib/array/base/mskunary4d/docs/repl.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@

{{alias}}( arrays, shape, fcn )
Applies a unary callback to elements in a four-dimensional nested input
array according to elements in a four-dimensional nested mask array and
assigns results to elements in a four-dimensional nested output array.

An element in an input array is "masked" if the corresponding element in the
mask array is non-zero.

Parameters
----------
arrays: ArrayLikeObject
Array-like object containing one input nested array, an input nested
mask array, and one output nested array.

shape: Array<integer>
Array shape.

fcn: Function
Unary callback.

Examples
--------
> var x = [ [ [ [ -1.0, -2.0 ], [ -3.0, -4.0 ] ] ] ];
> var m = [ [ [ [ 0, 1 ], [ 0, 0 ] ] ] ];
> var y = [ [ [ [ 0.0, 0.0 ], [ 0.0, 0.0 ] ] ] ];
> var shape = [ 1, 1, 2, 2 ];
> {{alias}}( [ x, m, y ], shape, {{alias:@stdlib/math/base/special/abs}} );
> y
[ [ [ [ 1.0, 0.0 ], [ 3.0, 4.0 ] ] ] ]

See Also
--------

Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
/*
* @license Apache-2.0
*
* Copyright (c) 2024 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

// TypeScript Version: 4.1

/// <reference types="@stdlib/types"/>

import { Array4D } from '@stdlib/types/array';
import { Shape4D } from '@stdlib/types/ndarray';

/**
* Unary callback.
*
* @param value - array element
* @returns result
*/
type Unary<T, U> = ( value: T ) => U;

/**
* Applies a unary callback to elements in a four-dimensional nested input array according to elements in a four-dimensional nested mask array and assigns results to elements in a four-dimensional nested output array.
*
* ## Notes
*
* - The function assumes that the input and output arrays have the same shape.
* - An element in an input array is "masked" if the corresponding element in the mask array is non-zero.
*
* @param arrays - array containing one input nested array, an input nested mask array, and one output nested array
* @param shape - array shape
* @param fcn - unary callback
*
* @example
* var ones4d = require( '@stdlib/array/base/ones4d' );
* var zeros4d = require( '@stdlib/array/base/zeros4d' );
*
* function scale( x ) {
* return x * 10.0;
* }
*
* var shape = [ 1, 1, 2, 2 ];
*
* var x = ones4d( shape );
* var y = zeros4d( shape );
*
* var mask = [ [ [ [ 0, 1 ], [ 0, 0 ] ] ] ];
*
* mskunary4d( [ x, mask, y ], shape, scale );
*
* console.log( y );
* // => [ [ [ [ 10.0, 0.0 ], [ 10.0, 10.0 ] ] ] ]
*/
declare function mskunary4d<T = unknown, U = unknown>( arrays: [ Array4D<T>, Array4D<number>, Array4D<U> ], shape: Shape4D, fcn: Unary<T, U> ): void;


// EXPORTS //

export = mskunary4d;
Loading