Skip to content

REF/TST: method-specific files for Series timeseries methods #32226

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 10 commits into from
Feb 25, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
83 changes: 82 additions & 1 deletion pandas/tests/series/methods/test_asfreq.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,13 @@
from datetime import datetime

import numpy as np
import pytest

from pandas import DataFrame, Series, period_range
from pandas import DataFrame, DatetimeIndex, Series, date_range, period_range
import pandas._testing as tm

from pandas.tseries.offsets import BDay, BMonthEnd


class TestAsFreq:
# TODO: de-duplicate/parametrize or move DataFrame test
Expand All @@ -21,3 +26,79 @@ def test_asfreq_ts(self):
result = ts.asfreq("D", how="start")
assert len(result) == len(ts)
tm.assert_index_equal(result.index, index.asfreq("D", how="start"))

@pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"])
def test_tz_aware_asfreq(self, tz):
dr = date_range("2011-12-01", "2012-07-20", freq="D", tz=tz)

ser = Series(np.random.randn(len(dr)), index=dr)

# it works!
ser.asfreq("T")

def test_asfreq(self):
ts = Series(
[0.0, 1.0, 2.0],
index=[
datetime(2009, 10, 30),
datetime(2009, 11, 30),
datetime(2009, 12, 31),
],
)

daily_ts = ts.asfreq("B")
monthly_ts = daily_ts.asfreq("BM")
tm.assert_series_equal(monthly_ts, ts)

daily_ts = ts.asfreq("B", method="pad")
monthly_ts = daily_ts.asfreq("BM")
tm.assert_series_equal(monthly_ts, ts)

daily_ts = ts.asfreq(BDay())
monthly_ts = daily_ts.asfreq(BMonthEnd())
tm.assert_series_equal(monthly_ts, ts)

result = ts[:0].asfreq("M")
assert len(result) == 0
assert result is not ts

daily_ts = ts.asfreq("D", fill_value=-1)
result = daily_ts.value_counts().sort_index()
expected = Series([60, 1, 1, 1], index=[-1.0, 2.0, 1.0, 0.0]).sort_index()
tm.assert_series_equal(result, expected)

def test_asfreq_datetimeindex_empty_series(self):
# GH#14320
index = DatetimeIndex(["2016-09-29 11:00"])
expected = Series(index=index, dtype=object).asfreq("H")
result = Series([3], index=index.copy()).asfreq("H")
tm.assert_index_equal(expected.index, result.index)

def test_asfreq_keep_index_name(self):
# GH#9854
index_name = "bar"
index = date_range("20130101", periods=20, name=index_name)
df = DataFrame(list(range(20)), columns=["foo"], index=index)

assert index_name == df.index.name
assert index_name == df.asfreq("10D").index.name

def test_asfreq_normalize(self):
rng = date_range("1/1/2000 09:30", periods=20)
norm = date_range("1/1/2000", periods=20)
vals = np.random.randn(20)
ts = Series(vals, index=rng)

result = ts.asfreq("D", normalize=True)
norm = date_range("1/1/2000", periods=20)
expected = Series(vals, index=norm)

tm.assert_series_equal(result, expected)

vals = np.random.randn(20, 3)
ts = DataFrame(vals, index=rng)

result = ts.asfreq("D", normalize=True)
expected = DataFrame(vals, index=norm)

tm.assert_frame_equal(result, expected)
72 changes: 72 additions & 0 deletions pandas/tests/series/methods/test_at_time.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
from datetime import time

import numpy as np
import pytest

from pandas._libs.tslibs import timezones

from pandas import DataFrame, Series, date_range
import pandas._testing as tm


class TestAtTime:
@pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"])
def test_localized_at_time(self, tzstr):
tz = timezones.maybe_get_tz(tzstr)

rng = date_range("4/16/2012", "5/1/2012", freq="H")
ts = Series(np.random.randn(len(rng)), index=rng)

ts_local = ts.tz_localize(tzstr)

result = ts_local.at_time(time(10, 0))
expected = ts.at_time(time(10, 0)).tz_localize(tzstr)
tm.assert_series_equal(result, expected)
assert timezones.tz_compare(result.index.tz, tz)

def test_at_time(self):
rng = date_range("1/1/2000", "1/5/2000", freq="5min")
ts = Series(np.random.randn(len(rng)), index=rng)
rs = ts.at_time(rng[1])
assert (rs.index.hour == rng[1].hour).all()
assert (rs.index.minute == rng[1].minute).all()
assert (rs.index.second == rng[1].second).all()

result = ts.at_time("9:30")
expected = ts.at_time(time(9, 30))
tm.assert_series_equal(result, expected)

df = DataFrame(np.random.randn(len(rng), 3), index=rng)

result = ts[time(9, 30)]
result_df = df.loc[time(9, 30)]
expected = ts[(rng.hour == 9) & (rng.minute == 30)]
exp_df = df[(rng.hour == 9) & (rng.minute == 30)]

tm.assert_series_equal(result, expected)
tm.assert_frame_equal(result_df, exp_df)

chunk = df.loc["1/4/2000":]
result = chunk.loc[time(9, 30)]
expected = result_df[-1:]
tm.assert_frame_equal(result, expected)

# midnight, everything
rng = date_range("1/1/2000", "1/31/2000")
ts = Series(np.random.randn(len(rng)), index=rng)

result = ts.at_time(time(0, 0))
tm.assert_series_equal(result, ts)

# time doesn't exist
rng = date_range("1/1/2012", freq="23Min", periods=384)
ts = Series(np.random.randn(len(rng)), rng)
rs = ts.at_time("16:00")
assert len(rs) == 0

def test_at_time_raises(self):
# GH20725
ser = Series("a b c".split())
msg = "Index must be DatetimeIndex"
with pytest.raises(TypeError, match=msg):
ser.at_time("00:00")
35 changes: 35 additions & 0 deletions pandas/tests/series/methods/test_between.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
import numpy as np

from pandas import Series, bdate_range, date_range, period_range
import pandas._testing as tm


class TestBetween:

# TODO: redundant with test_between_datetime_values?
def test_between(self):
series = Series(date_range("1/1/2000", periods=10))
left, right = series[[2, 7]]

result = series.between(left, right)
expected = (series >= left) & (series <= right)
tm.assert_series_equal(result, expected)

def test_between_datetime_values(self):
ser = Series(bdate_range("1/1/2000", periods=20).astype(object))
ser[::2] = np.nan

result = ser[ser.between(ser[3], ser[17])]
expected = ser[3:18].dropna()
tm.assert_series_equal(result, expected)

result = ser[ser.between(ser[3], ser[17], inclusive=False)]
expected = ser[5:16].dropna()
tm.assert_series_equal(result, expected)

def test_between_period_values(self):
ser = Series(period_range("2000-01-01", periods=10, freq="D"))
left, right = ser[[2, 7]]
result = ser.between(left, right)
expected = (ser >= left) & (ser <= right)
tm.assert_series_equal(result, expected)
144 changes: 144 additions & 0 deletions pandas/tests/series/methods/test_between_time.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,144 @@
from datetime import datetime, time
from itertools import product

import numpy as np
import pytest

from pandas._libs.tslibs import timezones
import pandas.util._test_decorators as td

from pandas import DataFrame, Series, date_range
import pandas._testing as tm


class TestBetweenTime:
@pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"])
def test_localized_between_time(self, tzstr):
tz = timezones.maybe_get_tz(tzstr)

rng = date_range("4/16/2012", "5/1/2012", freq="H")
ts = Series(np.random.randn(len(rng)), index=rng)

ts_local = ts.tz_localize(tzstr)

t1, t2 = time(10, 0), time(11, 0)
result = ts_local.between_time(t1, t2)
expected = ts.between_time(t1, t2).tz_localize(tzstr)
tm.assert_series_equal(result, expected)
assert timezones.tz_compare(result.index.tz, tz)

def test_between_time(self):
rng = date_range("1/1/2000", "1/5/2000", freq="5min")
ts = Series(np.random.randn(len(rng)), index=rng)
stime = time(0, 0)
etime = time(1, 0)

close_open = product([True, False], [True, False])
for inc_start, inc_end in close_open:
filtered = ts.between_time(stime, etime, inc_start, inc_end)
exp_len = 13 * 4 + 1
if not inc_start:
exp_len -= 5
if not inc_end:
exp_len -= 4

assert len(filtered) == exp_len
for rs in filtered.index:
t = rs.time()
if inc_start:
assert t >= stime
else:
assert t > stime

if inc_end:
assert t <= etime
else:
assert t < etime

result = ts.between_time("00:00", "01:00")
expected = ts.between_time(stime, etime)
tm.assert_series_equal(result, expected)

# across midnight
rng = date_range("1/1/2000", "1/5/2000", freq="5min")
ts = Series(np.random.randn(len(rng)), index=rng)
stime = time(22, 0)
etime = time(9, 0)

close_open = product([True, False], [True, False])
for inc_start, inc_end in close_open:
filtered = ts.between_time(stime, etime, inc_start, inc_end)
exp_len = (12 * 11 + 1) * 4 + 1
if not inc_start:
exp_len -= 4
if not inc_end:
exp_len -= 4

assert len(filtered) == exp_len
for rs in filtered.index:
t = rs.time()
if inc_start:
assert (t >= stime) or (t <= etime)
else:
assert (t > stime) or (t <= etime)

if inc_end:
assert (t <= etime) or (t >= stime)
else:
assert (t < etime) or (t >= stime)

def test_between_time_raises(self):
# GH20725
ser = Series("a b c".split())
msg = "Index must be DatetimeIndex"
with pytest.raises(TypeError, match=msg):
ser.between_time(start_time="00:00", end_time="12:00")

def test_between_time_types(self):
# GH11818
rng = date_range("1/1/2000", "1/5/2000", freq="5min")
msg = r"Cannot convert arg \[datetime\.datetime\(2010, 1, 2, 1, 0\)\] to a time"
with pytest.raises(ValueError, match=msg):
rng.indexer_between_time(datetime(2010, 1, 2, 1), datetime(2010, 1, 2, 5))

frame = DataFrame({"A": 0}, index=rng)
with pytest.raises(ValueError, match=msg):
frame.between_time(datetime(2010, 1, 2, 1), datetime(2010, 1, 2, 5))

series = Series(0, index=rng)
with pytest.raises(ValueError, match=msg):
series.between_time(datetime(2010, 1, 2, 1), datetime(2010, 1, 2, 5))

@td.skip_if_has_locale
def test_between_time_formats(self):
# GH11818
rng = date_range("1/1/2000", "1/5/2000", freq="5min")
ts = DataFrame(np.random.randn(len(rng), 2), index=rng)

strings = [
("2:00", "2:30"),
("0200", "0230"),
("2:00am", "2:30am"),
("0200am", "0230am"),
("2:00:00", "2:30:00"),
("020000", "023000"),
("2:00:00am", "2:30:00am"),
("020000am", "023000am"),
]
expected_length = 28

for time_string in strings:
assert len(ts.between_time(*time_string)) == expected_length

def test_between_time_axis(self):
# issue 8839
rng = date_range("1/1/2000", periods=100, freq="10min")
ts = Series(np.random.randn(len(rng)), index=rng)
stime, etime = ("08:00:00", "09:00:00")
expected_length = 7

assert len(ts.between_time(stime, etime)) == expected_length
assert len(ts.between_time(stime, etime, axis=0)) == expected_length
msg = "No axis named 1 for object type <class 'pandas.core.series.Series'>"
with pytest.raises(ValueError, match=msg):
ts.between_time(stime, etime, axis=1)
33 changes: 33 additions & 0 deletions pandas/tests/series/methods/test_truncate.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,10 @@
from datetime import datetime

import numpy as np
import pytest

import pandas as pd
from pandas import Series, date_range
import pandas._testing as tm

from pandas.tseries.offsets import BDay
Expand Down Expand Up @@ -76,3 +79,33 @@ def test_truncate_nonsortedindex(self):

with pytest.raises(ValueError, match=msg):
ts.sort_values(ascending=False).truncate(before="2011-11", after="2011-12")

def test_truncate_datetimeindex_tz(self):
# GH 9243
idx = date_range("4/1/2005", "4/30/2005", freq="D", tz="US/Pacific")
s = Series(range(len(idx)), index=idx)
result = s.truncate(datetime(2005, 4, 2), datetime(2005, 4, 4))
expected = Series([1, 2, 3], index=idx[1:4])
tm.assert_series_equal(result, expected)

def test_truncate_periodindex(self):
# GH 17717
idx1 = pd.PeriodIndex(
[pd.Period("2017-09-02"), pd.Period("2017-09-02"), pd.Period("2017-09-03")]
)
series1 = pd.Series([1, 2, 3], index=idx1)
result1 = series1.truncate(after="2017-09-02")

expected_idx1 = pd.PeriodIndex(
[pd.Period("2017-09-02"), pd.Period("2017-09-02")]
)
tm.assert_series_equal(result1, pd.Series([1, 2], index=expected_idx1))

idx2 = pd.PeriodIndex(
[pd.Period("2017-09-03"), pd.Period("2017-09-02"), pd.Period("2017-09-03")]
)
series2 = pd.Series([1, 2, 3], index=idx2)
result2 = series2.sort_index().truncate(after="2017-09-02")

expected_idx2 = pd.PeriodIndex([pd.Period("2017-09-02")])
tm.assert_series_equal(result2, pd.Series([2], index=expected_idx2))
Loading