-
-
Notifications
You must be signed in to change notification settings - Fork 18.5k
API: DataFrame.sparse accessor #25682
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 1 commit
24f48c3
6f619b5
94a7baf
534a379
6696f28
f433be8
0922296
318c06f
3005aed
8b136bf
57c884e
9cbcccd
663a87e
3f6a5aa
945531c
8a46ef4
727625e
5890c28
ed5b22a
b803f88
f23fa52
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -678,6 +678,36 @@ def _simple_new(cls, sparse_array, sparse_index, dtype): | |
new._dtype = dtype | ||
return new | ||
|
||
@classmethod | ||
def from_spmatrix(cls, data): | ||
""" | ||
Create a SparseArray from a scipy.sparse matrix. | ||
|
||
Parameters | ||
---------- | ||
data : scipy.sparse.sp_matrix | ||
This should be a 2-D SciPy sparse where the size | ||
of the second dimension is 1. In other words, a | ||
sparse matrix with a single column. | ||
|
||
Returns | ||
------- | ||
SparseArray. | ||
""" | ||
assert data.ndim == 2 | ||
|
||
length, ncol = data.shape | ||
|
||
assert ncol == 1 | ||
|
||
arr = data.data | ||
idx, _ = data.nonzero() | ||
zero = np.array(0, dtype=arr.dtype).item() | ||
dtype = SparseDtype(arr.dtype, zero) | ||
index = IntIndex(length, idx) | ||
|
||
return cls._simple_new(arr, index, dtype) | ||
|
||
def __array__(self, dtype=None, copy=True): | ||
fill_value = self.fill_value | ||
|
||
|
@@ -1891,6 +1921,9 @@ def _make_index(length, indices, kind): | |
# ---------------------------------------------------------------------------- | ||
# Accessor | ||
|
||
_validation_msg = "Can only use the '.sparse' accessor with Sparse data." | ||
|
||
|
||
@delegate_names(SparseArray, ['npoints', 'density', 'fill_value', | ||
'sp_values'], | ||
typ='property') | ||
|
@@ -1900,15 +1933,13 @@ class SparseAccessor(PandasDelegate): | |
""" | ||
|
||
def __init__(self, data=None): | ||
self._validate(data) | ||
# Store the Series since we need that for to_coo | ||
self._parent = data | ||
self._validate(data) | ||
|
||
@staticmethod | ||
def _validate(data): | ||
def _validate(self, data): | ||
if not isinstance(data.dtype, SparseDtype): | ||
msg = "Can only use the '.sparse' accessor with Sparse data." | ||
raise AttributeError(msg) | ||
raise AttributeError(_validation_msg) | ||
|
||
def _delegate_property_get(self, name, *args, **kwargs): | ||
return getattr(self._parent.values, name) | ||
|
@@ -2025,3 +2056,126 @@ def to_coo(self, row_levels=(0, ), column_levels=(1, ), sort_labels=False): | |
column_levels, | ||
sort_labels=sort_labels) | ||
return A, rows, columns | ||
|
||
def to_dense(self): | ||
from pandas import Series | ||
return Series(self._parent.array.to_dense(), | ||
index=self._parent.index, | ||
name=self._parent.name) | ||
|
||
|
||
class SparseFrameAccessor(PandasDelegate): | ||
|
||
def __init__(self, data=None): | ||
# Store the Series since we need that for to_coo | ||
self._parent = data | ||
self._validate(data) | ||
|
||
def _validate(self, data): | ||
dtypes = data.dtypes | ||
if not all(isinstance(t, SparseDtype) for t in dtypes): | ||
raise AttributeError(_validation_msg) | ||
|
||
@classmethod | ||
def from_spmatrix(cls, data, index=None, columns=None): | ||
jreback marked this conversation as resolved.
Show resolved
Hide resolved
|
||
""" | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I am assuming you are defining this here because then we can simply deprecate SparseDataFrame as this is much simpler / direct? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Right, this is the replacement for |
||
Create a new DataFrame from a scipy sparse matrix. | ||
|
||
Parameters | ||
---------- | ||
data : scipy.sparse.spmatrix | ||
Must be convertible to csc format. | ||
index, columns : Index, optional | ||
Row and column labels to use for the resulting DataFrame. | ||
Defaults to a RangeIndex. | ||
|
||
Returns | ||
------- | ||
DataFrame | ||
|
||
Examples | ||
-------- | ||
>>> import scipy.sparse | ||
>>> mat = scipy.sparse.eye(3) | ||
>>> pd.DataFrame.sparse.from_spmatrix(mat) | ||
0 1 2 | ||
0 1.0 0.0 0.0 | ||
1 0.0 1.0 0.0 | ||
2 0.0 0.0 1.0 | ||
""" | ||
from pandas import DataFrame | ||
|
||
data = data.tocsc() | ||
index, columns = cls._prep_index(data, index, columns) | ||
sparrays = [ | ||
SparseArray.from_spmatrix(data[:, i]) | ||
for i in range(data.shape[1]) | ||
] | ||
data = dict(zip(columns, sparrays)) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Not sure how often we use this construction but I assume this preclude a user from specifying a MI or anything with duplicated index entries due to hashability / uniqueness constraints of dict keys There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Fair point. I'd like to avoid the perf issue with passing There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Wasn't aware of the perf issue - is there an open issue for that? Yea think assigning directly would be a better approach |
||
return DataFrame(data, index=index) | ||
|
||
def to_dense(self): | ||
""" | ||
Convert to dense DataFrame | ||
|
||
Returns | ||
------- | ||
df : DataFrame | ||
""" | ||
from pandas import DataFrame | ||
|
||
data = {k: v.array.to_dense() | ||
for k, v in compat.iteritems(self._parent)} | ||
return DataFrame(data, | ||
index=self._parent.index, | ||
columns=self._parent.columns) | ||
|
||
def to_coo(self): | ||
jreback marked this conversation as resolved.
Show resolved
Hide resolved
|
||
try: | ||
from scipy.sparse import coo_matrix | ||
except ImportError: | ||
raise ImportError('Scipy is not installed') | ||
|
||
dtype = find_common_type(self._parent.dtypes) | ||
if isinstance(dtype, SparseDtype): | ||
dtype = dtype.subtype | ||
|
||
cols, rows, datas = [], [], [] | ||
for col, name in enumerate(self._parent): | ||
s = self._parent[name] | ||
row = s.array.sp_index.to_int_index().indices | ||
cols.append(np.repeat(col, len(row))) | ||
rows.append(row) | ||
datas.append(s.array.sp_values.astype(dtype, copy=False)) | ||
|
||
cols = np.concatenate(cols) | ||
rows = np.concatenate(rows) | ||
datas = np.concatenate(datas) | ||
return coo_matrix((datas, (rows, cols)), shape=self._parent.shape) | ||
|
||
@property | ||
def density(self): | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. If you can add type annotations anywhere it is easy would be nice. |
||
""" | ||
Ratio of non-sparse points to total (dense) data points | ||
represented in the DataFrame. | ||
""" | ||
return np.mean([column.array.density | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Would not taking the mean, and returning a Series instead, be more useful? |
||
for _, column in self._parent.iteritems()]) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. use items() |
||
|
||
@staticmethod | ||
def _prep_index(data, index, columns): | ||
TomAugspurger marked this conversation as resolved.
Show resolved
Hide resolved
|
||
import pandas.core.indexes.base as ibase | ||
|
||
N, K = data.shape | ||
if index is None: | ||
index = ibase.default_index(N) | ||
if columns is None: | ||
columns = ibase.default_index(K) | ||
|
||
if len(columns) != K: | ||
raise ValueError('Column length mismatch: {columns} vs. {K}' | ||
.format(columns=len(columns), K=K)) | ||
if len(index) != N: | ||
raise ValueError('Index length mismatch: {index} vs. {N}' | ||
.format(index=len(index), N=N)) | ||
return index, columns |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
import string | ||
|
||
import numpy as np | ||
import pytest | ||
|
||
import pandas as pd | ||
import pandas.util.testing as tm | ||
|
||
|
||
class TestSeriesAccessor(object): | ||
# TODO: collect other accessor tests | ||
def test_to_dense(self): | ||
s = pd.Series([0, 1, 0, 10], dtype='Sparse[int]') | ||
result = s.sparse.to_dense() | ||
expected = pd.Series([0, 1, 0, 10]) | ||
tm.assert_series_equal(result, expected) | ||
|
||
|
||
class TestFrameAccessor(object): | ||
@pytest.mark.parametrize('format', ['csc', 'csr', 'coo']) | ||
@pytest.mark.parametrize("labels", [ | ||
None, | ||
list(string.ascii_letters[:10]), | ||
]) | ||
@pytest.mark.parametrize('dtype', ['float64', 'int64']) | ||
def test_from_spmatrix(self, format, labels, dtype): | ||
pytest.importorskip("scipy") | ||
import scipy.sparse | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. hmm shouldn't we move the scipy specific test to a new file then just pyimportorskip at the top? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. My preference to keep all the accessor tests in a single file / class. |
||
sp_dtype = pd.SparseDtype(dtype, np.array(0, dtype=dtype).item()) | ||
|
||
mat = scipy.sparse.eye(10, format=format, dtype=dtype) | ||
result = pd.DataFrame.sparse.from_spmatrix( | ||
mat, index=labels, columns=labels | ||
) | ||
expected = pd.DataFrame( | ||
np.eye(10, dtype=dtype), | ||
index=labels, | ||
columns=labels, | ||
).astype(sp_dtype) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
def test_to_coo(self): | ||
pytest.importorskip("scipy") | ||
import scipy.sparse | ||
|
||
df = pd.DataFrame({ | ||
"A": [0, 1, 0], | ||
"B": [1, 0, 0], | ||
}, dtype='Sparse[int64, 0]') | ||
result = df.sparse.to_coo() | ||
expected = scipy.sparse.coo_matrix(np.asarray(df)) | ||
assert (result != expected).nnz == 0 | ||
|
||
def test_to_dense(self): | ||
df = pd.DataFrame({ | ||
"A": pd.SparseArray([1, 0], dtype=pd.SparseDtype('int64', 0)), | ||
"B": pd.SparseArray([1, 0], dtype=pd.SparseDtype('int64', 1)), | ||
"C": pd.SparseArray([1., 0.], | ||
dtype=pd.SparseDtype('float64', 0.0)), | ||
}, index=['b', 'a']) | ||
result = df.sparse.to_dense() | ||
expected = pd.DataFrame({ | ||
'A': [1, 0], | ||
'B': [1, 0], | ||
'C': [1.0, 0.0], | ||
}, index=['b', 'a']) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
def test_density(self): | ||
df = pd.DataFrame({ | ||
'A': pd.SparseArray([1, 0, 2, 1], fill_value=0), | ||
'B': pd.SparseArray([0, 1, 1, 1], fill_value=0), | ||
}) | ||
res = df.sparse.density | ||
expected = 0.75 | ||
assert res == expected |
Uh oh!
There was an error while loading. Please reload this page.