-
-
Notifications
You must be signed in to change notification settings - Fork 18.5k
API: DataFrame.sparse accessor #25682
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from all commits
24f48c3
6f619b5
94a7baf
534a379
6696f28
f433be8
0922296
318c06f
3005aed
8b136bf
57c884e
9cbcccd
663a87e
3f6a5aa
945531c
8a46ef4
727625e
5890c28
ed5b22a
b803f88
f23fa52
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -697,6 +697,55 @@ def _simple_new( | |
new._dtype = dtype | ||
return new | ||
|
||
@classmethod | ||
def from_spmatrix(cls, data): | ||
""" | ||
Create a SparseArray from a scipy.sparse matrix. | ||
|
||
.. versionadded:: 0.25.0 | ||
|
||
Parameters | ||
---------- | ||
data : scipy.sparse.sp_matrix | ||
This should be a SciPy sparse matrix where the size | ||
of the second dimension is 1. In other words, a | ||
sparse matrix with a single column. | ||
|
||
Returns | ||
------- | ||
SparseArray | ||
|
||
Examples | ||
-------- | ||
>>> import scipy.sparse | ||
>>> mat = scipy.sparse.coo_matrix((4, 1)) | ||
>>> pd.SparseArray.from_spmatrix(mat) | ||
[0.0, 0.0, 0.0, 0.0] | ||
Fill: 0.0 | ||
IntIndex | ||
Indices: array([], dtype=int32) | ||
""" | ||
length, ncol = data.shape | ||
|
||
if ncol != 1: | ||
raise ValueError( | ||
"'data' must have a single column, not '{}'".format(ncol) | ||
) | ||
|
||
# our sparse index classes require that the positions be strictly | ||
# increasing. So we need to sort loc, and arr accordingly. | ||
arr = data.data | ||
idx, _ = data.nonzero() | ||
loc = np.argsort(idx) | ||
arr = arr.take(loc) | ||
idx.sort() | ||
|
||
zero = np.array(0, dtype=arr.dtype).item() | ||
dtype = SparseDtype(arr.dtype, zero) | ||
index = IntIndex(length, idx) | ||
|
||
return cls._simple_new(arr, index, dtype) | ||
|
||
def __array__(self, dtype=None, copy=True): | ||
fill_value = self.fill_value | ||
|
||
|
@@ -1906,27 +1955,32 @@ def _make_index(length, indices, kind): | |
# ---------------------------------------------------------------------------- | ||
# Accessor | ||
|
||
|
||
class BaseAccessor: | ||
_validation_msg = "Can only use the '.sparse' accessor with Sparse data." | ||
|
||
def __init__(self, data=None): | ||
self._parent = data | ||
self._validate(data) | ||
|
||
def _validate(self, data): | ||
raise NotImplementedError | ||
|
||
|
||
@delegate_names(SparseArray, ['npoints', 'density', 'fill_value', | ||
'sp_values'], | ||
typ='property') | ||
class SparseAccessor(PandasDelegate): | ||
class SparseAccessor(BaseAccessor, PandasDelegate): | ||
""" | ||
Accessor for SparseSparse from other sparse matrix data types. | ||
""" | ||
|
||
def __init__(self, data=None): | ||
self._validate(data) | ||
# Store the Series since we need that for to_coo | ||
self._parent = data | ||
|
||
@staticmethod | ||
def _validate(data): | ||
def _validate(self, data): | ||
if not isinstance(data.dtype, SparseDtype): | ||
msg = "Can only use the '.sparse' accessor with Sparse data." | ||
raise AttributeError(msg) | ||
raise AttributeError(self._validation_msg) | ||
|
||
def _delegate_property_get(self, name, *args, **kwargs): | ||
return getattr(self._parent.values, name) | ||
return getattr(self._parent.array, name) | ||
|
||
def _delegate_method(self, name, *args, **kwargs): | ||
if name == 'from_coo': | ||
|
@@ -2040,3 +2094,190 @@ def to_coo(self, row_levels=(0, ), column_levels=(1, ), sort_labels=False): | |
column_levels, | ||
sort_labels=sort_labels) | ||
return A, rows, columns | ||
|
||
def to_dense(self): | ||
""" | ||
Convert a Series from sparse values to dense. | ||
|
||
.. versionadded:: 0.25.0 | ||
|
||
Returns | ||
------- | ||
Series: | ||
A Series with the same values, stored as a dense array. | ||
|
||
Examples | ||
-------- | ||
>>> series = pd.Series(pd.SparseArray([0, 1, 0])) | ||
>>> series | ||
0 0 | ||
1 1 | ||
2 0 | ||
dtype: Sparse[int64, 0] | ||
|
||
>>> series.sparse.to_dense() | ||
0 0 | ||
1 1 | ||
2 0 | ||
dtype: int64 | ||
""" | ||
from pandas import Series | ||
return Series(self._parent.array.to_dense(), | ||
index=self._parent.index, | ||
name=self._parent.name) | ||
|
||
|
||
class SparseFrameAccessor(BaseAccessor, PandasDelegate): | ||
""" | ||
DataFrame accessor for sparse data. | ||
|
||
.. versionadded :: 0.25.0 | ||
""" | ||
|
||
def _validate(self, data): | ||
dtypes = data.dtypes | ||
if not all(isinstance(t, SparseDtype) for t in dtypes): | ||
raise AttributeError(self._validation_msg) | ||
|
||
@classmethod | ||
def from_spmatrix(cls, data, index=None, columns=None): | ||
""" | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I am assuming you are defining this here because then we can simply deprecate SparseDataFrame as this is much simpler / direct? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Right, this is the replacement for |
||
Create a new DataFrame from a scipy sparse matrix. | ||
|
||
.. versionadded:: 0.25.0 | ||
|
||
Parameters | ||
---------- | ||
data : scipy.sparse.spmatrix | ||
Must be convertible to csc format. | ||
index, columns : Index, optional | ||
Row and column labels to use for the resulting DataFrame. | ||
Defaults to a RangeIndex. | ||
|
||
Returns | ||
------- | ||
DataFrame | ||
Each column of the DataFrame is stored as a | ||
:class:`SparseArray`. | ||
|
||
Examples | ||
-------- | ||
>>> import scipy.sparse | ||
>>> mat = scipy.sparse.eye(3) | ||
>>> pd.DataFrame.sparse.from_spmatrix(mat) | ||
0 1 2 | ||
0 1.0 0.0 0.0 | ||
1 0.0 1.0 0.0 | ||
2 0.0 0.0 1.0 | ||
""" | ||
from pandas import DataFrame | ||
|
||
data = data.tocsc() | ||
index, columns = cls._prep_index(data, index, columns) | ||
sparrays = [ | ||
SparseArray.from_spmatrix(data[:, i]) | ||
for i in range(data.shape[1]) | ||
] | ||
data = dict(enumerate(sparrays)) | ||
result = DataFrame(data, index=index) | ||
result.columns = columns | ||
return result | ||
|
||
def to_dense(self): | ||
""" | ||
Convert a DataFrame with sparse values to dense. | ||
|
||
.. versionadded:: 0.25.0 | ||
|
||
Returns | ||
------- | ||
DataFrame | ||
A DataFrame with the same values stored as dense arrays. | ||
|
||
Examples | ||
-------- | ||
>>> df = pd.DataFrame({"A": pd.SparseArray([0, 1, 0])}) | ||
>>> df.sparse.to_dense() | ||
A | ||
0 0 | ||
1 1 | ||
2 0 | ||
""" | ||
from pandas import DataFrame | ||
|
||
data = {k: v.array.to_dense() | ||
for k, v in self._parent.items()} | ||
return DataFrame(data, | ||
index=self._parent.index, | ||
columns=self._parent.columns) | ||
|
||
def to_coo(self): | ||
jreback marked this conversation as resolved.
Show resolved
Hide resolved
|
||
""" | ||
Return the contents of the frame as a sparse SciPy COO matrix. | ||
|
||
.. versionadded:: 0.25.0 | ||
|
||
Returns | ||
------- | ||
coo_matrix : scipy.sparse.spmatrix | ||
If the caller is heterogeneous and contains booleans or objects, | ||
the result will be of dtype=object. See Notes. | ||
|
||
Notes | ||
----- | ||
The dtype will be the lowest-common-denominator type (implicit | ||
upcasting); that is to say if the dtypes (even of numeric types) | ||
are mixed, the one that accommodates all will be chosen. | ||
|
||
e.g. If the dtypes are float16 and float32, dtype will be upcast to | ||
float32. By numpy.find_common_type convention, mixing int64 and | ||
and uint64 will result in a float64 dtype. | ||
""" | ||
try: | ||
from scipy.sparse import coo_matrix | ||
except ImportError: | ||
raise ImportError('Scipy is not installed') | ||
|
||
dtype = find_common_type(self._parent.dtypes) | ||
if isinstance(dtype, SparseDtype): | ||
dtype = dtype.subtype | ||
|
||
cols, rows, datas = [], [], [] | ||
for col, name in enumerate(self._parent): | ||
s = self._parent[name] | ||
row = s.array.sp_index.to_int_index().indices | ||
cols.append(np.repeat(col, len(row))) | ||
rows.append(row) | ||
datas.append(s.array.sp_values.astype(dtype, copy=False)) | ||
|
||
cols = np.concatenate(cols) | ||
rows = np.concatenate(rows) | ||
datas = np.concatenate(datas) | ||
return coo_matrix((datas, (rows, cols)), shape=self._parent.shape) | ||
|
||
@property | ||
def density(self) -> float: | ||
""" | ||
Ratio of non-sparse points to total (dense) data points | ||
represented in the DataFrame. | ||
""" | ||
return np.mean([column.array.density | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Would not taking the mean, and returning a Series instead, be more useful? |
||
for _, column in self._parent.items()]) | ||
|
||
@staticmethod | ||
def _prep_index(data, index, columns): | ||
TomAugspurger marked this conversation as resolved.
Show resolved
Hide resolved
|
||
import pandas.core.indexes.base as ibase | ||
|
||
N, K = data.shape | ||
if index is None: | ||
index = ibase.default_index(N) | ||
if columns is None: | ||
columns = ibase.default_index(K) | ||
|
||
if len(columns) != K: | ||
raise ValueError('Column length mismatch: {columns} vs. {K}' | ||
.format(columns=len(columns), K=K)) | ||
if len(index) != N: | ||
raise ValueError('Index length mismatch: {index} vs. {N}' | ||
.format(index=len(index), N=N)) | ||
return index, columns |
Uh oh!
There was an error while loading. Please reload this page.