Skip to content

PERF: Setting an item of incompatible dtype #61456

Open
@muhannad125

Description

@muhannad125

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this issue exists on the latest version of pandas.

  • I have confirmed this issue exists on the main branch of pandas.

Reproducible Example

df["feature"] = np.nan
for cluster in df["cluster"].unique():
df.loc[df["cluster"] == cluster, "feature"] = "string"

Installed Versions

INSTALLED VERSIONS

commit : 0691c5c
python : 3.10.12
python-bits : 64
OS : Linux
OS-release : 5.15.0-138-generic
Version : #148-Ubuntu SMP Fri Mar 14 19:05:48 UTC 2025
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_GB.utf8
LOCALE : en_GB.UTF-8

pandas : 2.2.3
numpy : 2.2.4
pytz : 2025.1
dateutil : 2.9.0.post0
pip : 25.0.1
Cython : None
sphinx : None
IPython : 8.34.0
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : 2023.6.0
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : 3.1.6
lxml.etree : 4.9.4
matplotlib : 3.10.1
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : 19.0.1
pyreadstat : None
pytest : None
python-calamine : None
pyxlsb : None
s3fs : 2023.6.0
scipy : 1.15.2
sqlalchemy : None
tables : None
tabulate : None
xarray : 2025.1.2
xlrd : None
xlsxwriter : None
zstandard : None
tzdata : 2025.1
qtpy : None
pyqt5 : None

Prior Performance

Setup

Dataset: df with 148,858 rows

Task: Assign "string" to a new column "feature" based on unique values in the "cluster" column.

Environment: Running on LSF

Test 1: Initialize with np.nan

import numpy as np

df["feature"] = np.nan
for cluster in df["cluster"].unique():
df.loc[df["cluster"] == cluster, "feature"] = "string"

Runtime: ~52.5 seconds

Warning:

FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. 
Value 'string' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.

Test 2: Initialize with "None"

df["feature"] = "None"
for cluster in df["cluster"].unique():
df.loc[df["cluster"] == cluster, "feature"] = "string"

Runtime: ~1 minute 35 seconds

No warnings

Observation: Slower performance despite avoiding the dtype mismatch warning.

Metadata

Metadata

Assignees

No one assigned

    Labels

    IndexingRelated to indexing on series/frames, not to indexes themselvesNeeds InfoClarification about behavior needed to assess issuePerformanceMemory or execution speed performance

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions