Skip to content

BUG: Subsequent calls to df.sub() are much faster than the first call #34297

Closed
@philippegr

Description

@philippegr
  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • (optional) I have confirmed this bug exists on the master branch of pandas.


Code Sample, a copy-pastable example

import numpy as np
import pandas as pd

# Building some general structure 
my_date_range = pd.date_range('20200101 00:00', '20200102 0:00', freq='S')
level_0_names = list(str(i) for i in range(30))
#level_0_names = list(range(30))
index = pd.MultiIndex.from_product([level_0_names, my_date_range])
column_names = ['col_1', 'col_2']

# Building a df that represents some value over time (think sensors)
# Indexed by sensor and time 
value_df = pd.DataFrame(np.random.rand(len(index),2), index=index, columns=column_names)

# Build a reference df for the reference value the sensor can take (like its max)
# Indexed by sensor
ref_df = pd.DataFrame(np.random.randint(1, 10, (len(level_0_names), 2)), 
                   index = level_0_names, 
                   columns=column_names)

# We now want to consider for each time index in value_df what is the deviation of the value observed wrt to the ref value 

# In a notebook, this first execution will be slow: 8-10s on my machine
# %%time 
value_df.sub(ref_df, level=0)

# This second execution will be fast: 100-150ms 
# %%time 
value_df.sub(ref_df, level=0)

# For reference, this is NOT the problem, the following lines would produce the same output
# On my machine it takes ~2s 
# %%time 
same_w_merge = pd.merge(left = value_df.reset_index(level=1), right = ref_df, right_index=True, left_index=True) 
same_w_merge['col_1_x'] -= same_w_merge['col_1_y']
same_w_merge['col_2_x'] -= same_w_merge['col_2_y']
same_w_merge = same_w_merge.drop(columns = ['col_1_y', 'col_2_y'])
same_w_merge = same_w_merge.rename({'col_1_x':'col_1', 'col_2_x': 'col_2'})
same_w_merge = same_w_merge.set_index('level_1', append=True).sort_index()

Problem description

There is a significant difference in speed between the first and second call to sub (which are the same instruction) in the code above. I don't understand where this is coming from. In particular why this is notably slower than merge (whose performance remains consistent).

Upon investigation, I noticed that the difference between runs is much smaller if value_df.index.level[0] is of type int (80ms for the first run 60ms for the subsequent)

Expected Output

Current output is correct, speed of first call is the issue here

Output of pd.show_versions()

Bug reproduced here on a conda/ OS X install for simplicity but can confirm it exists as well in a Ubuntu Based Docker

INSTALLED VERSIONS

commit : None
python : 3.7.7.final.0
python-bits : 64
OS : Darwin
OS-release : 18.7.0
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : en_CA.UTF-8
LOCALE : en_CA.UTF-8

pandas : 1.0.3
numpy : 1.18.1
pytz : 2020.1
dateutil : 2.8.1
pip : 20.0.2
setuptools : 46.4.0.post20200518
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.13.0
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pytest : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
numba : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    MultiIndexNumeric OperationsArithmetic, Comparison, and Logical operationsPerformanceMemory or execution speed performance

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions