Open
Description
@ggerganov Ok, I did few tests and apparently there's an issue that is subject to a separate issue.
Using the following command:
llama-server ... -ub 4096 -b 4096 -c 4096 -np 4
Everything works pretty much as expected. Amount of tokens that a task slot can handle appears to be
ub / np
. So in this example, each slot gets a 1024 tokens window. This does seem to give a nice boost depending on the embeddings chunking strategy (my current embeddings are up to 1024 tokens), but I haven't measured precisely yet.However, using the following command:
llama-server ... -ub 1024 -b 4096 -c 4096 -np 4
The server crashes with
GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens") failed
as soon as it receives the next batch of tasks:ggml_vulkan: Found 1 Vulkan devices: ggml_vulkan: 0 = AMD Radeon RX 6600M (AMD proprietary driver) | uma: 0 | fp16: 1 | warp size: 32 | shared memory: 32768 | int dot: 1 | matrix cores: none build: 5080 (997b1b42) with MSVC 19.38.33134.0 for x64 system info: n_threads = 8, n_threads_batch = 8, total_threads = 16 system_info: n_threads = 8 (n_threads_batch = 8) / 16 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 | main: binding port with default address family main: HTTP server is listening, hostname: 192.168.0.2, port: 8080, http threads: 15 main: loading model srv load_model: loading model 'C:\Temp\snowflake-arctic-embed-l-v2.0-q8_0.gguf' llama_model_load_from_file_impl: using device Vulkan0 (AMD Radeon RX 6600M) - 8176 MiB free llama_model_loader: loaded meta data with 36 key-value pairs and 389 tensors from C:\Temp\snowflake-arctic-embed-l-v2.0-q8_0.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = bert llama_model_loader: - kv 1: general.type str = model llama_model_loader: - kv 2: general.name str = Snowflake Arctic Embed L v2.0 llama_model_loader: - kv 3: general.version str = v2.0 llama_model_loader: - kv 4: general.basename str = snowflake-arctic-embed-l llama_model_loader: - kv 5: general.size_label str = 567M llama_model_loader: - kv 6: general.license str = apache-2.0 llama_model_loader: - kv 7: general.tags arr[str,8] = ["sentence-transformers", "feature-ex... llama_model_loader: - kv 8: general.languages arr[str,74] = ["af", "ar", "az", "be", "bg", "bn", ... llama_model_loader: - kv 9: bert.block_count u32 = 24 llama_model_loader: - kv 10: bert.context_length u32 = 8192 llama_model_loader: - kv 11: bert.embedding_length u32 = 1024 llama_model_loader: - kv 12: bert.feed_forward_length u32 = 4096 llama_model_loader: - kv 13: bert.attention.head_count u32 = 16 llama_model_loader: - kv 14: bert.attention.layer_norm_epsilon f32 = 0.000010 llama_model_loader: - kv 15: general.file_type u32 = 7 llama_model_loader: - kv 16: bert.attention.causal bool = false llama_model_loader: - kv 17: bert.pooling_type u32 = 2 llama_model_loader: - kv 18: tokenizer.ggml.model str = t5 llama_model_loader: - kv 19: tokenizer.ggml.pre str = default llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,250002] = ["<s>", "<pad>", "</s>", "<unk>", ","... llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,250002] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,250002] = [3, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, ... llama_model_loader: - kv 23: tokenizer.ggml.add_space_prefix bool = true llama_model_loader: - kv 24: tokenizer.ggml.token_type_count u32 = 1 llama_model_loader: - kv 25: tokenizer.ggml.remove_extra_whitespaces bool = true llama_model_loader: - kv 26: tokenizer.ggml.precompiled_charsmap arr[u8,237539] = [0, 180, 2, 0, 0, 132, 0, 0, 0, 0, 0,... llama_model_loader: - kv 27: tokenizer.ggml.bos_token_id u32 = 0 llama_model_loader: - kv 28: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 29: tokenizer.ggml.unknown_token_id u32 = 3 llama_model_loader: - kv 30: tokenizer.ggml.seperator_token_id u32 = 2 llama_model_loader: - kv 31: tokenizer.ggml.padding_token_id u32 = 1 llama_model_loader: - kv 32: tokenizer.ggml.mask_token_id u32 = 250001 llama_model_loader: - kv 33: tokenizer.ggml.add_bos_token bool = true llama_model_loader: - kv 34: tokenizer.ggml.add_eos_token bool = true llama_model_loader: - kv 35: general.quantization_version u32 = 2 llama_model_loader: - type f32: 244 tensors llama_model_loader: - type q8_0: 145 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q8_0 print_info: file size = 598.63 MiB (8.86 BPW) load: model vocab missing newline token, using special_pad_id instead load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: special tokens cache size = 4 load: token to piece cache size = 2.1668 MB print_info: arch = bert print_info: vocab_only = 0 print_info: n_ctx_train = 8192 print_info: n_embd = 1024 print_info: n_layer = 24 print_info: n_head = 16 print_info: n_head_kv = 16 print_info: n_rot = 64 print_info: n_swa = 0 print_info: n_swa_pattern = 1 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 1 print_info: n_embd_k_gqa = 1024 print_info: n_embd_v_gqa = 1024 print_info: f_norm_eps = 1.0e-05 print_info: f_norm_rms_eps = 0.0e+00 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 4096 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 0 print_info: pooling type = 2 print_info: rope type = 2 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 8192 print_info: rope_finetuned = unknown print_info: ssm_d_conv = 0 print_info: ssm_d_inner = 0 print_info: ssm_d_state = 0 print_info: ssm_dt_rank = 0 print_info: ssm_dt_b_c_rms = 0 print_info: model type = 335M print_info: model params = 566.70 M print_info: general.name = Snowflake Arctic Embed L v2.0 print_info: vocab type = UGM print_info: n_vocab = 250002 print_info: n_merges = 0 print_info: BOS token = 0 '<s>' print_info: EOS token = 2 '</s>' print_info: UNK token = 3 '<unk>' print_info: SEP token = 2 '</s>' print_info: PAD token = 1 '<pad>' print_info: MASK token = 250001 '[PAD250000]' print_info: LF token = 0 '<s>' print_info: EOG token = 2 '</s>' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: offloading 24 repeating layers to GPU load_tensors: offloading output layer to GPU load_tensors: offloaded 25/25 layers to GPU load_tensors: Vulkan0 model buffer size = 307.22 MiB load_tensors: CPU_Mapped model buffer size = 291.41 MiB ...................................................... llama_context: constructing llama_context llama_context: n_seq_max = 3 llama_context: n_ctx = 4096 llama_context: n_ctx_per_seq = 1365 llama_context: n_batch = 4096 llama_context: n_ubatch = 1024 llama_context: causal_attn = 0 llama_context: flash_attn = 0 llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (1365) < n_ctx_train (8192) -- the full capacity of the model will not be utilized llama_context: Vulkan_Host output buffer size = 0.00 MiB init: kv_size = 4096, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 24, can_shift = 1 init: Vulkan0 KV buffer size = 384.00 MiB llama_context: KV self size = 384.00 MiB, K (f16): 192.00 MiB, V (f16): 192.00 MiB llama_context: Vulkan0 compute buffer size = 88.01 MiB llama_context: Vulkan_Host compute buffer size = 12.01 MiB llama_context: graph nodes = 825 llama_context: graph splits = 4 (with bs=1024), 2 (with bs=1) common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096 common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable) srv init: initializing slots, n_slots = 3 slot init: id 0 | task -1 | new slot n_ctx_slot = 1365 slot init: id 1 | task -1 | new slot n_ctx_slot = 1365 slot init: id 2 | task -1 | new slot n_ctx_slot = 1365 main: model loaded main: chat template, chat_template: {%- for message in messages -%} {{- '<|im_start|>' + message.role + ' ' + message.content + '<|im_end|> ' -}} {%- endfor -%} {%- if add_generation_prompt -%} {{- '<|im_start|>assistant ' -}} {%- endif -%}, example_format: '<|im_start|>system You are a helpful assistant<|im_end|> <|im_start|>user Hello<|im_end|> <|im_start|>assistant Hi there<|im_end|> <|im_start|>user How are you?<|im_end|> <|im_start|>assistant ' main: server is listening on http://192.168.0.2:8080 - starting the main loop srv update_slots: all slots are idle slot launch_slot_: id 0 | task 0 | processing task slot update_slots: id 0 | task 0 | new prompt, n_ctx_slot = 1365, n_keep = 0, n_prompt_tokens = 830 slot update_slots: id 0 | task 0 | kv cache rm [0, end) slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 830, n_tokens = 830, progress = 1.000000 slot update_slots: id 0 | task 0 | prompt done, n_past = 830, n_tokens = 830 slot release: id 0 | task 0 | stop processing: n_past = 830, truncated = 0 slot launch_slot_: id 1 | task 2 | processing task slot launch_slot_: id 2 | task 3 | processing task slot launch_slot_: id 0 | task 4 | processing task slot update_slots: id 0 | task 4 | new prompt, n_ctx_slot = 1365, n_keep = 0, n_prompt_tokens = 255 srv log_server_r: request: POST /v1/embeddings 192.168.0.7 200 slot update_slots: id 0 | task 4 | kv cache rm [0, end) slot update_slots: id 0 | task 4 | prompt processing progress, n_past = 255, n_tokens = 255, progress = 1.000000 slot update_slots: id 0 | task 4 | prompt done, n_past = 255, n_tokens = 255 slot update_slots: id 1 | task 2 | new prompt, n_ctx_slot = 1365, n_keep = 0, n_prompt_tokens = 852 slot update_slots: id 1 | task 2 | kv cache rm [0, end) slot update_slots: id 1 | task 2 | prompt processing progress, n_past = 852, n_tokens = 1107, progress = 1.000000 slot update_slots: id 1 | task 2 | prompt done, n_past = 852, n_tokens = 1107 slot update_slots: id 2 | task 3 | new prompt, n_ctx_slot = 1365, n_keep = 0, n_prompt_tokens = 246 slot update_slots: id 2 | task 3 | kv cache rm [0, end) slot update_slots: id 2 | task 3 | prompt processing progress, n_past = 246, n_tokens = 1353, progress = 1.000000 slot update_slots: id 2 | task 3 | prompt done, n_past = 246, n_tokens = 1353 C:\Sources\llama.cpp\src\llama-context.cpp:1220: GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens") failed