Description
Name and Version
version: 5061 (916c83b)
built with MSVC 19.38.33134.0 for x64
Operating systems
Windows
GGML backends
Vulkan
Hardware
Ryzen 7 5800H + AMD Radeon RX 6600M
Models
Any model
Problem description & steps to reproduce
When trying to run llama-server with -ub 8192 -b 8192 -c 8192
, it crashes with ggml_vulkan: Device memory allocation of size 3959422976 failed.
with any model I try (the allocation size differs between models), even though I have enough GPU memory after model is loaded.
I tried smaller models to exclude possible OOM (the log includes nomic-embed-text-v1.5) and I see that ~100mb of VRAM gets allocated for a model (0.9GB used), then it crashes when trying to allocate 3959422976 bytes.
When setting any of these parameters to 4096, the model loads successfully.
The same occurs with any model. Tried with Qwen2.5 3B Q8_0 and nomic-embed-text-v1.5 Q8_0.
First Bad Commit
No response
Relevant log output
.\llama-server.exe --embedding -ub 8192 -b 8192 -c 8192 --host 127.0.0.1 --port 8080 -m nomic-embed-text-v1.5.Q8_0.gguf -ngl 99
ggml_vulkan: Found 1 Vulkan devices:
ggml_vulkan: 0 = AMD Radeon RX 6600M (AMD proprietary driver) | uma: 0 | fp16: 1 | warp size: 32 | shared memory: 32768 | int dot: 1 | matrix cores: none
build: 5061 (916c83bf) with MSVC 19.38.33134.0 for x64
system info: n_threads = 8, n_threads_batch = 8, total_threads = 16
system_info: n_threads = 8 (n_threads_batch = 8) / 16 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
main: binding port with default address family
main: HTTP server is listening, hostname: 127.0.0.1, port: 8080, http threads: 15
main: loading model
srv load_model: loading model 'nomic-embed-text-v1.5.Q8_0.gguf'
llama_model_load_from_file_impl: using device Vulkan0 (AMD Radeon RX 6600M) - 8176 MiB free
llama_model_loader: loaded meta data with 23 key-value pairs and 112 tensors from nomic-embed-text-v1.5.Q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = nomic-bert
llama_model_loader: - kv 1: general.name str = nomic-embed-text-v1.5
llama_model_loader: - kv 2: nomic-bert.block_count u32 = 12
llama_model_loader: - kv 3: nomic-bert.context_length u32 = 2048
llama_model_loader: - kv 4: nomic-bert.embedding_length u32 = 768
llama_model_loader: - kv 5: nomic-bert.feed_forward_length u32 = 3072
llama_model_loader: - kv 6: nomic-bert.attention.head_count u32 = 12
llama_model_loader: - kv 7: nomic-bert.attention.layer_norm_epsilon f32 = 0.000000
llama_model_loader: - kv 8: general.file_type u32 = 7
llama_model_loader: - kv 9: nomic-bert.attention.causal bool = false
llama_model_loader: - kv 10: nomic-bert.pooling_type u32 = 1
llama_model_loader: - kv 11: nomic-bert.rope.freq_base f32 = 1000.000000
llama_model_loader: - kv 12: tokenizer.ggml.token_type_count u32 = 2
llama_model_loader: - kv 13: tokenizer.ggml.bos_token_id u32 = 101
llama_model_loader: - kv 14: tokenizer.ggml.eos_token_id u32 = 102
llama_model_loader: - kv 15: tokenizer.ggml.model str = bert
llama_model_loader: - kv 16: tokenizer.ggml.tokens arr[str,30522] = ["[PAD]", "[unused0]", "[unused1]", "...
llama_model_loader: - kv 17: tokenizer.ggml.scores arr[f32,30522] = [-1000.000000, -1000.000000, -1000.00...
llama_model_loader: - kv 18: tokenizer.ggml.token_type arr[i32,30522] = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 100
llama_model_loader: - kv 20: tokenizer.ggml.seperator_token_id u32 = 102
llama_model_loader: - kv 21: tokenizer.ggml.padding_token_id u32 = 0
llama_model_loader: - kv 22: general.quantization_version u32 = 2
llama_model_loader: - type f32: 51 tensors
llama_model_loader: - type q8_0: 61 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q8_0
print_info: file size = 138.65 MiB (8.51 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 5
load: token to piece cache size = 0.2032 MB
print_info: arch = nomic-bert
print_info: vocab_only = 0
print_info: n_ctx_train = 2048
print_info: n_embd = 768
print_info: n_layer = 12
print_info: n_head = 12
print_info: n_head_kv = 12
print_info: n_rot = 64
print_info: n_swa = 0
print_info: n_swa_pattern = 1
print_info: n_embd_head_k = 64
print_info: n_embd_head_v = 64
print_info: n_gqa = 1
print_info: n_embd_k_gqa = 768
print_info: n_embd_v_gqa = 768
print_info: f_norm_eps = 1.0e-12
print_info: f_norm_rms_eps = 0.0e+00
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 3072
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 0
print_info: pooling type = 1
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 1000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 2048
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 137M
print_info: model params = 136.73 M
print_info: general.name = nomic-embed-text-v1.5
print_info: vocab type = WPM
print_info: n_vocab = 30522
print_info: n_merges = 0
print_info: BOS token = 101 '[CLS]'
print_info: EOS token = 102 '[SEP]'
print_info: UNK token = 100 '[UNK]'
print_info: SEP token = 102 '[SEP]'
print_info: PAD token = 0 '[PAD]'
print_info: MASK token = 103 '[MASK]'
print_info: LF token = 0 '[PAD]'
print_info: EOG token = 102 '[SEP]'
print_info: max token length = 21
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 12 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 13/13 layers to GPU
load_tensors: Vulkan0 model buffer size = 114.89 MiB
load_tensors: CPU_Mapped model buffer size = 23.76 MiB
......................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 8192
llama_context: n_ctx_per_seq = 8192
llama_context: n_batch = 8192
llama_context: n_ubatch = 8192
llama_context: causal_attn = 0
llama_context: flash_attn = 0
llama_context: freq_base = 1000.0
llama_context: freq_scale = 1
llama_context: n_ctx_pre_seq (8192) > n_ctx_train (2048) -- possible training context overflow
llama_context: Vulkan_Host output buffer size = 0.00 MiB
init: kv_size = 8192, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 12, can_shift = 1
init: Vulkan0 KV buffer size = 288.00 MiB
llama_context: KV self size = 288.00 MiB, K (f16): 144.00 MiB, V (f16): 144.00 MiB
ggml_vulkan: Device memory allocation of size 3959422976 failed.
ggml_vulkan: Requested buffer size exceeds device memory allocation limit: ErrorOutOfDeviceMemory
ggml_gallocr_reserve_n: failed to allocate Vulkan0 buffer of size 3959422976
llama_init_from_model: failed to initialize the context: failed to allocate compute pp buffers
common_init_from_params: failed to create context with model 'nomic-embed-text-v1.5.Q8_0.gguf'
srv load_model: failed to load model, 'nomic-embed-text-v1.5.Q8_0.gguf'
srv operator (): operator (): cleaning up before exit...