Skip to content

Update UNETR inference application to publish images for Clara Render Server #182

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Oct 14, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 9 additions & 1 deletion examples/apps/ai_unetr_seg_app/app.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
from monai.deploy.operators.dicom_seg_writer_operator import DICOMSegmentationWriterOperator
from monai.deploy.operators.dicom_series_selector_operator import DICOMSeriesSelectorOperator
from monai.deploy.operators.dicom_series_to_volume_operator import DICOMSeriesToVolumeOperator
from monai.deploy.operators.publisher_operator import PublisherOperator


@resource(cpu=1, gpu=1, memory="7Gi")
Expand Down Expand Up @@ -46,6 +47,9 @@ def compose(self):
series_to_vol_op = DICOMSeriesToVolumeOperator()
# Model specific inference operator, supporting MONAI transforms.
unetr_seg_op = UnetrSegOperator()
# Create the publisher operator
publisher_op = PublisherOperator()

# Creates DICOM Seg writer with segment label name in a string list
dicom_seg_writer = DICOMSegmentationWriterOperator(
seg_labels=[
Expand All @@ -64,15 +68,19 @@ def compose(self):
"lad",
]
)

# Create the processing pipeline, by specifying the upstream and downstream operators, and
# ensuring the output from the former matches the input of the latter, in both name and type.
self.add_flow(study_loader_op, series_selector_op, {"dicom_study_list": "dicom_study_list"})
self.add_flow(series_selector_op, series_to_vol_op, {"dicom_series": "dicom_series"})
self.add_flow(series_to_vol_op, unetr_seg_op, {"image": "image"})
# Note below the dicom_seg_writer requires two inputs, each coming from a upstream operator.
# Also note that the DICOMSegmentationWriterOperator may throw exception with some inputs.
# Bug has been created to track the issue.
self.add_flow(series_selector_op, dicom_seg_writer, {"dicom_series": "dicom_series"})
self.add_flow(unetr_seg_op, dicom_seg_writer, {"seg_image": "seg_image"})
# Add the publishing operator to save the input and seg images for Render Server.
# Note the PublisherOperator has temp impl till a proper rendering module is created.
self.add_flow(unetr_seg_op, publisher_op, {"saved_images_folder": "saved_images_folder"})

self._logger.debug(f"End {self.compose.__name__}")

Expand Down
19 changes: 15 additions & 4 deletions examples/apps/ai_unetr_seg_app/unetr_seg_operator.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,12 +10,11 @@
# limitations under the License.

import logging
from os import path

from numpy import uint8

import monai.deploy.core as md
from monai.deploy.core import ExecutionContext, Image, InputContext, IOType, Operator, OutputContext
from monai.deploy.core import DataPath, ExecutionContext, Image, InputContext, IOType, Operator, OutputContext
from monai.deploy.operators.monai_seg_inference_operator import InMemImageReader, MonaiSegInferenceOperator
from monai.transforms import (
Activationsd,
Expand All @@ -35,6 +34,7 @@

@md.input("image", Image, IOType.IN_MEMORY)
@md.output("seg_image", Image, IOType.IN_MEMORY)
@md.output("saved_images_folder", DataPath, IOType.DISK)
@md.env(pip_packages=["monai==0.6.0", "torch>=1.5", "numpy>=1.17", "nibabel"])
class UnetrSegOperator(Operator):
"""Performs multi-organ segmentation using UNETR model with an image converted from a DICOM CT series.
Expand Down Expand Up @@ -62,12 +62,16 @@ def compute(self, op_input: InputContext, op_output: OutputContext, context: Exe
# Get the output path from the execution context for saving file(s) to app output.
# Without using this path, operator would be saving files to its designated path, e.g.
# $PWD/.monai_workdir/operators/6048d75a-5de1-45b9-8bd1-2252f88827f2/0/output
output_path = context.output.get().path
op_output_folder_name = DataPath("saved_images_folder")
op_output.set(op_output_folder_name, "saved_images_folder")
op_output_folder_path = op_output.get("saved_images_folder").path
op_output_folder_path.mkdir(parents=True, exist_ok=True)
print(f"Operator output folder path: {op_output_folder_path}")

# This operator gets an in-memory Image object, so a specialized ImageReader is needed.
_reader = InMemImageReader(input_image)
pre_transforms = self.pre_process(_reader)
post_transforms = self.post_process(pre_transforms, path.join(output_path, "prediction_output"))
post_transforms = self.post_process(pre_transforms, op_output_folder_path)

# Delegates inference and saving output to the built-in operator.
infer_operator = MonaiSegInferenceOperator(
Expand Down Expand Up @@ -115,5 +119,12 @@ def post_process(self, pre_transforms: Compose, out_dir: str = "./prediction_out
keys=pred_key, transform=pre_transforms, orig_keys=self._input_dataset_key, nearest_interp=True
),
SaveImaged(keys=pred_key, output_dir=out_dir, output_postfix="seg", output_dtype=uint8, resample=False),
SaveImaged(
keys=self._input_dataset_key,
output_dir=out_dir,
output_postfix="",
output_dtype=uint8,
resample=False,
),
]
)