Description
in sac.py
s = torch.tensor([t.s for t in self.replay_buffer]).float().to(device)
Traceback (most recent call last):
File "D:\PycharmProject\Deep-reinforcement-learning-with-pytorch-master\Char09 SAC\SAC.py", line 307, in
main()
File "D:\PycharmProject\Deep-reinforcement-learning-with-pytorch-master\Char09 SAC\SAC.py", line 293, in main
agent.update()
File "D:\PycharmProject\Deep-reinforcement-learning-with-pytorch-master\Char09 SAC\SAC.py", line 244, in update
Q_loss.backward(retain_graph = True)
File "C:\Users\lx\anaconda3\envs\torch\lib\site-packages\torch_tensor.py", line 363, in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs)
File "C:\Users\lx\anaconda3\envs\torch\lib\site-packages\torch\autograd_init_.py", line 173, in backward
Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
RuntimeError: Found dtype Double but expected Float