Skip to content

docs: improve README examples of stats/base/dists/normal namespace #1679

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Jun 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
103 changes: 101 additions & 2 deletions lib/node_modules/@stdlib/stats/base/dists/normal/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -109,12 +109,111 @@ var y = dist.pdf( 2.0 );
<!-- eslint no-undef: "error" -->

```javascript
var objectKeys = require( '@stdlib/utils/keys' );
var normal = require( '@stdlib/stats/base/dists/normal' );

console.log( objectKeys( normal ) );
/*
A bakery is analyzing cake baking times to ensure consistency and better schedule their baking processes.

The Central Limit Theorem (CLT) states that the average baking times from many batches will follow a normal distribution if there are enough batches (typically n > 30).

Assuming each record represents the average baking time per batch and the bakery has collected the following data:

- Mean baking time (μ/mu): 20 minutes.
- Standard deviation in baking time (σ/sigma): 3 minutes.

We can model the average bake times using a normal distribution with μ (mu) = 20.0 minutes and σ = 3.0 minutes.
*/

var mu = 20.0;
var sigma = 3.0;

var normalDist = new normal.Normal( mu, sigma );

// Output the standard deviation of the baking times:
console.log( normalDist.sigma );
// => 3.0

// Adjust distribution parameters
normalDist.sigma = 4.0;

// Adjusted standard deviation to reflect different variance scenario:
console.log( normalDist.sigma );
// => 4.0

// Excess kurtosis of a normal distribution (measure of "tailedness"):
console.log( normalDist.kurtosis );
// => 0.0

// Median baking time:
console.log( normalDist.median );
// => 20.0

// Variance of the baking times after adjusting sigma:
console.log( normalDist.variance );
// => 16.0

// Probability density function at the mean baking time:
console.log( normal.pdf( 20.0, mu, sigma ) );
// => ~0.133

// Cumulative distribution function at the mean (portion of times ≤ 20 minutes):
console.log( normal.cdf( 20.0, mu, sigma ) );
// => ~0.5

// 50th percentile (median) of the baking times:
console.log( normal.quantile( 0.5, mu, sigma ) );
// => 20.0

// Moment-generating function value at 0.5 (used in probability theory):
console.log( normal.mgf( 0.5, mu, sigma ) );
// => ~67846.291

// Entropy of the normal distribution (measure of uncertainty):
console.log( normal.entropy( mu, sigma ) );
// => ~2.518

// Mean baking time:
console.log( normal.mean( mu, sigma ) );
// => 20.0

// Median baking time:
console.log( normal.median( mu, sigma ) );
// => 20.0

// Mode of the baking times (most frequent value):
console.log( normal.mode( mu, sigma ) );
// => 20.0

// Variance of the baking times:
console.log( normal.variance( mu, sigma ) );
// => 9.0

// Skewness of the distribution (symmetry measure):
console.log( normal.skewness( mu, sigma ) );
// => 0.0

var myquantile = normal.quantile.factory( 20.0, 3.0 );

// 20th percentile (value below which 20% baking times fall):
console.log( myquantile( 0.2 ) );
// => ~17.475

// 80th percentile (value below which 80% baking times fall):
console.log( myquantile( 0.8 ) );
// => ~22.525

var mylogpdf = normal.logpdf.factory( 20.0, 3.0 );

// Logarithm of the probability density function at the mean:
console.log( mylogpdf( 20.0 ) );
// => ~-2.018

// Logarithm of the probability density function at 15 minutes:
console.log( mylogpdf( 15.0 ) );
// => ~-3.406
```


</section>

<!-- /.examples -->
Expand Down
102 changes: 100 additions & 2 deletions lib/node_modules/@stdlib/stats/base/dists/normal/examples/index.js
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,105 @@

'use strict';

var objectKeys = require( '@stdlib/utils/keys' );
var normal = require( './../lib' );

console.log( objectKeys( normal ) );
/*
A bakery is analyzing cake baking times to ensure consistency and better schedule their baking processes.

The Central Limit Theorem (CLT) states that the average baking times from many batches will follow a normal distribution if there are enough batches (typically n > 30).

Assuming each record represents the average baking time per batch and the bakery has collected the following data:

- Mean baking time (μ/mu): 20 minutes.
- Standard deviation in baking time (σ/sigma): 3 minutes.

We can model the average bake times using a normal distribution with μ (mu) = 20.0 minutes and σ = 3.0 minutes.
*/

var mu = 20.0;
var sigma = 3.0;

var normalDist = new normal.Normal( mu, sigma );

// Output the standard deviation of the baking times:
console.log( normalDist.sigma );
// => 3.0

// Adjust distribution parameters
normalDist.sigma = 4.0;

// Adjusted standard deviation to reflect different variance scenario:
console.log( normalDist.sigma );
// => 4.0

// Excess kurtosis of a normal distribution (measure of "tailedness"):
console.log( normalDist.kurtosis );
// => 0.0

// Median baking time:
console.log( normalDist.median );
// => 20.0

// Variance of the baking times after adjusting sigma:
console.log( normalDist.variance );
// => 16.0

// Probability density function at the mean baking time:
console.log( normal.pdf( 20.0, mu, sigma ) );
// => ~0.133

// Cumulative distribution function at the mean (portion of times ≤ 20 minutes):
console.log( normal.cdf( 20.0, mu, sigma ) );
// => ~0.5

// 50th percentile (median) of the baking times:
console.log( normal.quantile( 0.5, mu, sigma ) );
// => 20.0

// Moment-generating function value at 0.5 (used in probability theory):
console.log( normal.mgf( 0.5, mu, sigma ) );
// => ~67846.291

// Entropy of the normal distribution (measure of uncertainty):
console.log( normal.entropy( mu, sigma ) );
// => ~2.518

// Mean baking time:
console.log( normal.mean( mu, sigma ) );
// => 20.0

// Median baking time:
console.log( normal.median( mu, sigma ) );
// => 20.0

// Mode of the baking times (most frequent value):
console.log( normal.mode( mu, sigma ) );
// => 20.0

// Variance of the baking times:
console.log( normal.variance( mu, sigma ) );
// => 9.0

// Skewness of the distribution (symmetry measure):
console.log( normal.skewness( mu, sigma ) );
// => 0.0

var myquantile = normal.quantile.factory( 20.0, 3.0 );

// 20th percentile (value below which 20% baking times fall):
console.log( myquantile( 0.2 ) );
// => ~17.475

// 80th percentile (value below which 80% baking times fall):
console.log( myquantile( 0.8 ) );
// => ~22.525

var mylogpdf = normal.logpdf.factory( 20.0, 3.0 );

// Logarithm of the probability density function at the mean:
console.log( mylogpdf( 20.0 ) );
// => ~-2.018

// Logarithm of the probability density function at 15 minutes:
console.log( mylogpdf( 15.0 ) );
// => ~-3.406
Loading