Skip to content

Commit 6373477

Browse files
rahulptl165kgryte
andauthored
feat: add accessor protocol support and refactor stats/base/nanvarianceyc
PR-URL: #6143 Closes: #5678 Co-authored-by: Athan Reines <kgryte@gmail.com> Reviewed-by: Athan Reines <kgryte@gmail.com> Signed-off-by: Athan Reines <kgryte@gmail.com>
1 parent eb8b850 commit 6373477

File tree

12 files changed

+628
-187
lines changed

12 files changed

+628
-187
lines changed

lib/node_modules/@stdlib/stats/base/nanvarianceyc/README.md

Lines changed: 27 additions & 32 deletions
Original file line numberDiff line numberDiff line change
@@ -98,7 +98,7 @@ The use of the term `n-1` is commonly referred to as Bessel's correction. Note,
9898
var nanvarianceyc = require( '@stdlib/stats/base/nanvarianceyc' );
9999
```
100100

101-
#### nanvarianceyc( N, correction, x, stride )
101+
#### nanvarianceyc( N, correction, x, strideX )
102102

103103
Computes the [variance][variance] of a strided array `x` ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.
104104

@@ -114,61 +114,52 @@ The function has the following parameters:
114114
- **N**: number of indexed elements.
115115
- **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `n-c` where `c` corresponds to the provided degrees of freedom adjustment and `n` corresponds to the number of non-`NaN` indexed elements. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
116116
- **x**: input [`Array`][mdn-array] or [`typed array`][mdn-typed-array].
117-
- **stride**: index increment for `x`.
117+
- **strideX**: stride length for `x`.
118118

119-
The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [variance][variance] of every other element in `x`,
119+
The `N` and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the [variance][variance] of every other element in `x`,
120120

121121
```javascript
122-
var floor = require( '@stdlib/math/base/special/floor' );
122+
var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN, NaN ];
123123

124-
var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN ];
125-
var N = floor( x.length / 2 );
126-
127-
var v = nanvarianceyc( N, 1, x, 2 );
124+
var v = nanvarianceyc( 5, 1, x, 2 );
128125
// returns 6.25
129126
```
130127

131128
Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
132129

133-
<!-- eslint-disable stdlib/capitalized-comments -->
130+
<!-- eslint-disable stdlib/capitalized-comments, max-len -->
134131

135132
```javascript
136133
var Float64Array = require( '@stdlib/array/float64' );
137-
var floor = require( '@stdlib/math/base/special/floor' );
138134

139-
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
135+
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );
140136
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
141137

142-
var N = floor( x0.length / 2 );
143-
144-
var v = nanvarianceyc( N, 1, x1, 2 );
138+
var v = nanvarianceyc( 5, 1, x1, 2 );
145139
// returns 6.25
146140
```
147141

148-
#### nanvarianceyc.ndarray( N, correction, x, stride, offset )
142+
#### nanvarianceyc.ndarray( N, correction, x, strideX, offsetX )
149143

150144
Computes the [variance][variance] of a strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer and alternative indexing semantics.
151145

152146
```javascript
153147
var x = [ 1.0, -2.0, NaN, 2.0 ];
154148

155-
var v = nanvarianceyc.ndarray( x.length, 1, x, 1, 0 );
149+
var v = nanvarianceyc.ndarray( 4, 1, x, 1, 0 );
156150
// returns ~4.33333
157151
```
158152

159153
The function has the following additional parameters:
160154

161-
- **offset**: starting index for `x`.
155+
- **offsetX**: starting index for `x`.
162156

163-
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [variance][variance] for every other value in `x` starting from the second value
157+
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the [variance][variance] for every other value in `x` starting from the second value
164158

165159
```javascript
166-
var floor = require( '@stdlib/math/base/special/floor' );
160+
var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ];
167161

168-
var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ];
169-
var N = floor( x.length / 2 );
170-
171-
var v = nanvarianceyc.ndarray( N, 1, x, 2, 1 );
162+
var v = nanvarianceyc.ndarray( 5, 1, x, 2, 1 );
172163
// returns 6.25
173164
```
174165

@@ -182,6 +173,7 @@ var v = nanvarianceyc.ndarray( N, 1, x, 2, 1 );
182173

183174
- If `N <= 0`, both functions return `NaN`.
184175
- If `n - c` is less than or equal to `0` (where `c` corresponds to the provided degrees of freedom adjustment and `n` corresponds to the number of non-`NaN` indexed elements), both functions return `NaN`.
176+
- Both functions support array-like objects having getter and setter accessors for array element access (e.g., [`@stdlib/array/base/accessor`][@stdlib/array/base/accessor]).
185177
- Depending on the environment, the typed versions ([`dnanvarianceyc`][@stdlib/stats/base/dnanvarianceyc], [`snanvarianceyc`][@stdlib/stats/base/snanvarianceyc], etc.) are likely to be significantly more performant.
186178

187179
</section>
@@ -195,18 +187,19 @@ var v = nanvarianceyc.ndarray( N, 1, x, 2, 1 );
195187
<!-- eslint no-undef: "error" -->
196188

197189
```javascript
198-
var randu = require( '@stdlib/random/base/randu' );
199-
var round = require( '@stdlib/math/base/special/round' );
200-
var Float64Array = require( '@stdlib/array/float64' );
190+
var uniform = require( '@stdlib/random/base/uniform' );
191+
var filledarrayBy = require( '@stdlib/array/filled-by' );
192+
var bernoulli = require( '@stdlib/random/base/bernoulli' );
201193
var nanvarianceyc = require( '@stdlib/stats/base/nanvarianceyc' );
202194

203-
var x;
204-
var i;
205-
206-
x = new Float64Array( 10 );
207-
for ( i = 0; i < x.length; i++ ) {
208-
x[ i ] = round( (randu()*100.0) - 50.0 );
195+
function rand() {
196+
if ( bernoulli( 0.8 ) < 1 ) {
197+
return NaN;
198+
}
199+
return uniform( -50.0, 50.0 );
209200
}
201+
202+
var x = filledarrayBy( 10, 'generic', rand );
210203
console.log( x );
211204

212205
var v = nanvarianceyc( x.length, 1, x, 1 );
@@ -271,6 +264,8 @@ console.log( v );
271264

272265
[@stdlib/stats/base/varianceyc]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/varianceyc
273266

267+
[@stdlib/array/base/accessor]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/array/base/accessor
268+
274269
<!-- </related-links> -->
275270

276271
</section>

lib/node_modules/@stdlib/stats/base/nanvarianceyc/benchmark/benchmark.js

Lines changed: 17 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,9 @@
2121
// MODULES //
2222

2323
var bench = require( '@stdlib/bench' );
24-
var randu = require( '@stdlib/random/base/randu' );
24+
var uniform = require( '@stdlib/random/base/uniform' );
25+
var bernoulli = require( '@stdlib/random/base/bernoulli' );
26+
var filledarrayBy = require( '@stdlib/array/filled-by' );
2527
var isnan = require( '@stdlib/math/base/assert/is-nan' );
2628
var pow = require( '@stdlib/math/base/special/pow' );
2729
var pkg = require( './../package.json' ).name;
@@ -30,6 +32,19 @@ var nanvarianceyc = require( './../lib/nanvarianceyc.js' );
3032

3133
// FUNCTIONS //
3234

35+
/**
36+
* Returns a random value or `NaN`.
37+
*
38+
* @private
39+
* @returns {number} random number or `NaN`
40+
*/
41+
function rand() {
42+
if ( bernoulli( 0.8 ) < 1 ) {
43+
return NaN;
44+
}
45+
return uniform( -10.0, 10.0 );
46+
}
47+
3348
/**
3449
* Creates a benchmark function.
3550
*
@@ -38,17 +53,7 @@ var nanvarianceyc = require( './../lib/nanvarianceyc.js' );
3853
* @returns {Function} benchmark function
3954
*/
4055
function createBenchmark( len ) {
41-
var x;
42-
var i;
43-
44-
x = [];
45-
for ( i = 0; i < len; i++ ) {
46-
if ( randu() < 0.2 ) {
47-
x.push( NaN );
48-
} else {
49-
x.push( ( randu()*20.0 ) - 10.0 );
50-
}
51-
}
56+
var x = filledarrayBy( len, 'generic', rand );
5257
return benchmark;
5358

5459
function benchmark( b ) {

lib/node_modules/@stdlib/stats/base/nanvarianceyc/benchmark/benchmark.ndarray.js

Lines changed: 17 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,9 @@
2121
// MODULES //
2222

2323
var bench = require( '@stdlib/bench' );
24-
var randu = require( '@stdlib/random/base/randu' );
24+
var uniform = require( '@stdlib/random/base/uniform' );
25+
var bernoulli = require( '@stdlib/random/base/bernoulli' );
26+
var filledarrayBy = require( '@stdlib/array/filled-by' );
2527
var isnan = require( '@stdlib/math/base/assert/is-nan' );
2628
var pow = require( '@stdlib/math/base/special/pow' );
2729
var pkg = require( './../package.json' ).name;
@@ -30,6 +32,19 @@ var nanvarianceyc = require( './../lib/ndarray.js' );
3032

3133
// FUNCTIONS //
3234

35+
/**
36+
* Returns a random value or `NaN`.
37+
*
38+
* @private
39+
* @returns {number} random number or `NaN`
40+
*/
41+
function rand() {
42+
if ( bernoulli( 0.8 ) < 1 ) {
43+
return NaN;
44+
}
45+
return uniform( -10.0, 10.0 );
46+
}
47+
3348
/**
3449
* Creates a benchmark function.
3550
*
@@ -38,17 +53,7 @@ var nanvarianceyc = require( './../lib/ndarray.js' );
3853
* @returns {Function} benchmark function
3954
*/
4055
function createBenchmark( len ) {
41-
var x;
42-
var i;
43-
44-
x = [];
45-
for ( i = 0; i < len; i++ ) {
46-
if ( randu() < 0.2 ) {
47-
x.push( NaN );
48-
} else {
49-
x.push( ( randu()*20.0 ) - 10.0 );
50-
}
51-
}
56+
var x = filledarrayBy( len, 'generic', rand );
5257
return benchmark;
5358

5459
function benchmark( b ) {

lib/node_modules/@stdlib/stats/base/nanvarianceyc/docs/repl.txt

Lines changed: 15 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,10 @@
11

2-
{{alias}}( N, correction, x, stride )
2+
{{alias}}( N, correction, x, strideX )
33
Computes the variance of a strided array ignoring `NaN` values and using a
44
one-pass algorithm proposed by Youngs and Cramer.
55

6-
The `N` and `stride` parameters determine which elements in `x` are accessed
7-
at runtime.
6+
The `N` and stride parameters determine which elements in the strided array
7+
are accessed at runtime.
88

99
Indexing is relative to the first index. To introduce an offset, use a typed
1010
array view.
@@ -34,8 +34,8 @@
3434
x: Array<number>|TypedArray
3535
Input array.
3636

37-
stride: integer
38-
Index increment.
37+
strideX: integer
38+
Stride length.
3939

4040
Returns
4141
-------
@@ -46,25 +46,22 @@
4646
--------
4747
// Standard Usage:
4848
> var x = [ 1.0, -2.0, NaN, 2.0 ];
49-
> {{alias}}( x.length, 1, x, 1 )
49+
> {{alias}}( 4, 1, x, 1 )
5050
~4.3333
5151

5252
// Using `N` and `stride` parameters:
5353
> x = [ -2.0, 1.0, 1.0, -5.0, 2.0, -1.0 ];
54-
> var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
55-
> var stride = 2;
56-
> {{alias}}( N, 1, x, stride )
54+
> {{alias}}( 3, 1, x, 2 )
5755
~4.3333
5856

5957
// Using view offsets:
6058
> var x0 = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );
6159
> var x1 = new {{alias:@stdlib/array/float64}}( x0.buffer, x0.BYTES_PER_ELEMENT*1 );
62-
> N = {{alias:@stdlib/math/base/special/floor}}( x0.length / 2 );
63-
> stride = 2;
64-
> {{alias}}( N, 1, x1, stride )
60+
> {{alias}}( 3, 1, x1, 2 )
6561
~4.3333
6662

67-
{{alias}}.ndarray( N, correction, x, stride, offset )
63+
64+
{{alias}}.ndarray( N, correction, x, strideX, offsetX )
6865
Computes the variance of a strided array ignoring `NaN` values and using a
6966
one-pass algorithm proposed by Youngs and Cramer and alternative indexing
7067
semantics.
@@ -94,10 +91,10 @@
9491
x: Array<number>|TypedArray
9592
Input array.
9693

97-
stride: integer
98-
Index increment.
94+
strideX: integer
95+
Stride length.
9996

100-
offset: integer
97+
offsetX: integer
10198
Starting index.
10299

103100
Returns
@@ -109,13 +106,12 @@
109106
--------
110107
// Standard Usage:
111108
> var x = [ 1.0, -2.0, NaN, 2.0 ];
112-
> {{alias}}.ndarray( x.length, 1, x, 1, 0 )
109+
> {{alias}}.ndarray( 4, 1, x, 1, 0 )
113110
~4.3333
114111

115112
// Using offset parameter:
116113
> var x = [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ];
117-
> var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
118-
> {{alias}}.ndarray( N, 1, x, 2, 1 )
114+
> {{alias}}.ndarray( 3, 1, x, 2, 1 )
119115
~4.3333
120116

121117
See Also

lib/node_modules/@stdlib/stats/base/nanvarianceyc/docs/types/index.d.ts

Lines changed: 12 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,12 @@
2020

2121
/// <reference types="@stdlib/types"/>
2222

23-
import { NumericArray } from '@stdlib/types/array';
23+
import { NumericArray, Collection, AccessorArrayLike } from '@stdlib/types/array';
24+
25+
/**
26+
* Input array.
27+
*/
28+
type InputArray = NumericArray | Collection<number> | AccessorArrayLike<number>;
2429

2530
/**
2631
* Interface describing `nanvarianceyc`.
@@ -32,7 +37,7 @@ interface Routine {
3237
* @param N - number of indexed elements
3338
* @param correction - degrees of freedom adjustment
3439
* @param x - input array
35-
* @param stride - stride length
40+
* @param strideX - stride length
3641
* @returns variance
3742
*
3843
* @example
@@ -41,16 +46,16 @@ interface Routine {
4146
* var v = nanvarianceyc( x.length, 1, x, 1 );
4247
* // returns ~4.3333
4348
*/
44-
( N: number, correction: number, x: NumericArray, stride: number ): number;
49+
( N: number, correction: number, x: InputArray, strideX: number ): number;
4550

4651
/**
4752
* Computes the variance of a strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer and alternative indexing semantics.
4853
*
4954
* @param N - number of indexed elements
5055
* @param correction - degrees of freedom adjustment
5156
* @param x - input array
52-
* @param stride - stride length
53-
* @param offset - starting index
57+
* @param strideX - stride length
58+
* @param offsetX - starting index
5459
* @returns variance
5560
*
5661
* @example
@@ -59,7 +64,7 @@ interface Routine {
5964
* var v = nanvarianceyc.ndarray( x.length, 1, x, 1, 0 );
6065
* // returns ~4.3333
6166
*/
62-
ndarray( N: number, correction: number, x: NumericArray, stride: number, offset: number ): number;
67+
ndarray( N: number, correction: number, x: InputArray, strideX: number, offsetX: number ): number;
6368
}
6469

6570
/**
@@ -68,7 +73,7 @@ interface Routine {
6873
* @param N - number of indexed elements
6974
* @param correction - degrees of freedom adjustment
7075
* @param x - input array
71-
* @param stride - stride length
76+
* @param strideX - stride length
7277
* @returns variance
7378
*
7479
* @example

0 commit comments

Comments
 (0)