Skip to content

XGBoost tutorial #820

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Sep 16, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions example/jupyter/.gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
.ipynb_checkpoints
357 changes: 357 additions & 0 deletions example/jupyter/tutorial_xgboost.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,357 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# XGBoost on SQLFlow Tutorial\n",
"\n",
"This is a tutorial on train/predict XGBoost model in SQLFLow, you can find more SQLFlow usage from the [User Guide](https://github.com/sql-machine-learning/sqlflow/blob/develop/doc/user_guide.md), in this tutorial you will learn how to:\n",
"- Train a XGBoost model to fit the boston housing dataset; and\n",
"- Predict the housing price using the trained model;\n",
"\n",
"\n",
"## The Dataset\n",
"\n",
"This tutorial would use the [Boston Housing](https://www.kaggle.com/c/boston-housing) as the demonstration dataset.\n",
"The database contains 506 lines and 14 columns, the meaning of each column is as follows:\n",
"\n",
"Column | Explain \n",
"-- | -- \n",
"crim|per capita crime rate by town.\n",
"zn|proportion of residential land zoned for lots over 25,000 sq.ft.\n",
"indus|proportion of non-retail business acres per town.\n",
"chas|Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).\n",
"nox|nitrogen oxides concentration (parts per 10 million).\n",
"rm|average number of rooms per dwelling.\n",
"age|proportion of owner-occupied units built prior to 1940.\n",
"dis|weighted mean of distances to five Boston employment centres.\n",
"rad|index of accessibility to radial highways.\n",
"tax|full-value property-tax rate per \\$10,000.\n",
"ptratio|pupil-teacher ratio by town.\n",
"black|1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town.\n",
"lstat|lower status of the population (percent).\n",
"medv|median value of owner-occupied homes in $1000s.\n",
"\n",
"We separated the dataset into train/test dataset, which is used to train/predict our model. SQLFlow would automatically split the training dataset into train/validation dataset while training progress."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"+---------+---------+------+-----+---------+-------+\n",
"| Field | Type | Null | Key | Default | Extra |\n",
"+---------+---------+------+-----+---------+-------+\n",
"| crim | float | YES | | None | |\n",
"| zn | float | YES | | None | |\n",
"| indus | float | YES | | None | |\n",
"| chas | int(11) | YES | | None | |\n",
"| nox | float | YES | | None | |\n",
"| rm | float | YES | | None | |\n",
"| age | float | YES | | None | |\n",
"| dis | float | YES | | None | |\n",
"| rad | int(11) | YES | | None | |\n",
"| tax | int(11) | YES | | None | |\n",
"| ptratio | float | YES | | None | |\n",
"| b | float | YES | | None | |\n",
"| lstat | float | YES | | None | |\n",
"| medv | float | YES | | None | |\n",
"+---------+---------+------+-----+---------+-------+"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%sqlflow\n",
"describe boston.train;"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"+---------+---------+------+-----+---------+-------+\n",
"| Field | Type | Null | Key | Default | Extra |\n",
"+---------+---------+------+-----+---------+-------+\n",
"| crim | float | YES | | None | |\n",
"| zn | float | YES | | None | |\n",
"| indus | float | YES | | None | |\n",
"| chas | int(11) | YES | | None | |\n",
"| nox | float | YES | | None | |\n",
"| rm | float | YES | | None | |\n",
"| age | float | YES | | None | |\n",
"| dis | float | YES | | None | |\n",
"| rad | int(11) | YES | | None | |\n",
"| tax | int(11) | YES | | None | |\n",
"| ptratio | float | YES | | None | |\n",
"| b | float | YES | | None | |\n",
"| lstat | float | YES | | None | |\n",
"| medv | float | YES | | None | |\n",
"+---------+---------+------+-----+---------+-------+"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%sqlflow\n",
"describe boston.test;"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Fit Boston Housing Dataset\n",
"\n",
"First, let's train an XGBoost regression model to fit the boston housing dataset, we prefer to train the model for `30 rounds`,\n",
"and using `squarederror` loss function that the SQLFLow extended SQL can be like:\n",
"\n",
"``` sql\n",
"TRAIN xgboost.gbtree\n",
"WITH\n",
" train.num_boost_round=30,\n",
" objective=\"reg:squarederror\"\n",
"```\n",
"\n",
"`xgboost.gbtree` is the estimator name, `gbtree` is one of the XGBoost booster, you can find more information from [here](https://xgboost.readthedocs.io/en/latest/parameter.html#general-parameters).\n",
"\n",
"We can specify the training data columns in `COLUMN clause`, and the label by `LABEL` keyword:\n",
"\n",
"``` sql\n",
"COLUMN crim, zn, indus, chas, nox, rm, age, dis, rad, tax, ptratio, b, lstat\n",
"LABEL medv\n",
"```\n",
"\n",
"To save the trained model, we can use `INTO clause` to specify a model name:\n",
"\n",
"``` sql\n",
"INTO sqlflow_models.my_xgb_regression_model\n",
"```\n",
"\n",
"Second, let's use a standar SQL to fetch the traning data from table `boston.train`:\n",
"\n",
"``` sql\n",
"SELECT * FROM boston.train\n",
"```\n",
"\n",
"Finally, the following is the SQLFlow Train statment of this regression task, you can run it in the cell:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[03:44:56] 387x13 matrix with 5031 entries loaded from train.txt\n",
"\n",
"[03:44:56] 109x13 matrix with 1417 entries loaded from test.txt\n",
"\n",
"[0]\ttrain-rmse:17.0286\tvalidation-rmse:17.8089\n",
"\n",
"[1]\ttrain-rmse:12.285\tvalidation-rmse:13.2787\n",
"\n",
"[2]\ttrain-rmse:8.93071\tvalidation-rmse:9.87677\n",
"\n",
"[3]\ttrain-rmse:6.60757\tvalidation-rmse:7.64013\n",
"\n",
"[4]\ttrain-rmse:4.96022\tvalidation-rmse:6.0181\n",
"\n",
"[5]\ttrain-rmse:3.80725\tvalidation-rmse:4.95013\n",
"\n",
"[6]\ttrain-rmse:2.94382\tvalidation-rmse:4.2357\n",
"\n",
"[7]\ttrain-rmse:2.36361\tvalidation-rmse:3.74683\n",
"\n",
"[8]\ttrain-rmse:1.95236\tvalidation-rmse:3.43284\n",
"\n",
"[9]\ttrain-rmse:1.66604\tvalidation-rmse:3.20455\n",
"\n",
"[10]\ttrain-rmse:1.4738\tvalidation-rmse:3.08947\n",
"\n",
"[11]\ttrain-rmse:1.35336\tvalidation-rmse:3.0492\n",
"\n",
"[12]\ttrain-rmse:1.22835\tvalidation-rmse:2.99508\n",
"\n",
"[13]\ttrain-rmse:1.15615\tvalidation-rmse:2.98604\n",
"\n",
"[14]\ttrain-rmse:1.11082\tvalidation-rmse:2.96433\n",
"\n",
"[15]\ttrain-rmse:1.01666\tvalidation-rmse:2.96584\n",
"\n",
"[16]\ttrain-rmse:0.953761\tvalidation-rmse:2.94013\n",
"\n",
"[17]\ttrain-rmse:0.905753\tvalidation-rmse:2.91569\n",
"\n",
"[18]\ttrain-rmse:0.870137\tvalidation-rmse:2.89735\n",
"\n",
"[19]\ttrain-rmse:0.800778\tvalidation-rmse:2.87206\n",
"\n",
"[20]\ttrain-rmse:0.757704\tvalidation-rmse:2.86564\n",
"\n",
"[21]\ttrain-rmse:0.74058\tvalidation-rmse:2.86587\n",
"\n",
"[22]\ttrain-rmse:0.66901\tvalidation-rmse:2.86224\n",
"\n",
"[23]\ttrain-rmse:0.647195\tvalidation-rmse:2.87395\n",
"\n",
"[24]\ttrain-rmse:0.609025\tvalidation-rmse:2.86069\n",
"\n",
"[25]\ttrain-rmse:0.562925\tvalidation-rmse:2.87205\n",
"\n",
"[26]\ttrain-rmse:0.541676\tvalidation-rmse:2.86275\n",
"\n",
"[27]\ttrain-rmse:0.524815\tvalidation-rmse:2.87106\n",
"\n",
"[28]\ttrain-rmse:0.483566\tvalidation-rmse:2.86129\n",
"\n",
"[29]\ttrain-rmse:0.460363\tvalidation-rmse:2.85877\n",
"\n"
]
}
],
"source": [
"%%sqlflow\n",
"SELECT * FROM boston.train\n",
"TRAIN xgboost.gbtree\n",
"WITH\n",
" objective=\"reg:squarederror\",\n",
" train.num_boost_round = 30\n",
"COLUMN crim, zn, indus, chas, nox, rm, age, dis, rad, tax, ptratio, b, lstat\n",
"LABEL medv\n",
"INTO sqlflow_models.my_xgb_regression_model;"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Predict the housing price\n",
"After training the regression model, let's predict the house price using the trained model.\n",
"\n",
"First, we can specify the trained model by `USING clause`: \n",
"\n",
"```sql\n",
"USING sqlflow_models.my_xgb_regression_model\n",
"```\n",
"\n",
"Than, we can specify the prediction result table by `PREDICT clause`:\n",
"\n",
"``` sql\n",
"PREDICT boston.predict.medv\n",
"```\n",
"\n",
"And using a standar SQL to fetch the prediction data:\n",
"\n",
"``` sql\n",
"SELECT * FROM boston.test\n",
"```\n",
"\n",
"Finally, the following is the SQLFLow Prediction statment:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[03:45:18] 10x13 matrix with 130 entries loaded from predict.txt\n",
"\n",
"Done predicting. Predict table : boston.predict\n",
"\n"
]
}
],
"source": [
"%%sqlflow\n",
"SELECT * FROM boston.test\n",
"PREDICT boston.predict.medv\n",
"USING sqlflow_models.my_xgb_regression_model;"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's have a glance at prediction results."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"+---------+-----+-------+------+-------+-------+------+--------+-----+-----+---------+--------+-------+---------+\n",
"| crim | zn | indus | chas | nox | rm | age | dis | rad | tax | ptratio | b | lstat | medv |\n",
"+---------+-----+-------+------+-------+-------+------+--------+-----+-----+---------+--------+-------+---------+\n",
"| 0.2896 | 0.0 | 9.69 | 0 | 0.585 | 5.39 | 72.9 | 2.7986 | 6 | 391 | 19.2 | 396.9 | 21.14 | 21.9436 |\n",
"| 0.26838 | 0.0 | 9.69 | 0 | 0.585 | 5.794 | 70.6 | 2.8927 | 6 | 391 | 19.2 | 396.9 | 14.1 | 21.9667 |\n",
"| 0.23912 | 0.0 | 9.69 | 0 | 0.585 | 6.019 | 65.3 | 2.4091 | 6 | 391 | 19.2 | 396.9 | 12.92 | 22.9708 |\n",
"| 0.17783 | 0.0 | 9.69 | 0 | 0.585 | 5.569 | 73.5 | 2.3999 | 6 | 391 | 19.2 | 395.77 | 15.1 | 22.6373 |\n",
"| 0.22438 | 0.0 | 9.69 | 0 | 0.585 | 6.027 | 79.7 | 2.4982 | 6 | 391 | 19.2 | 396.9 | 14.33 | 21.9439 |\n",
"| 0.06263 | 0.0 | 11.93 | 0 | 0.573 | 6.593 | 69.1 | 2.4786 | 1 | 273 | 21.0 | 391.99 | 9.67 | 24.0095 |\n",
"| 0.04527 | 0.0 | 11.93 | 0 | 0.573 | 6.12 | 76.7 | 2.2875 | 1 | 273 | 21.0 | 396.9 | 9.08 | 25.0 |\n",
"| 0.06076 | 0.0 | 11.93 | 0 | 0.573 | 6.976 | 91.0 | 2.1675 | 1 | 273 | 21.0 | 396.9 | 5.64 | 31.6326 |\n",
"| 0.10959 | 0.0 | 11.93 | 0 | 0.573 | 6.794 | 89.3 | 2.3889 | 1 | 273 | 21.0 | 393.45 | 6.48 | 26.8375 |\n",
"| 0.04741 | 0.0 | 11.93 | 0 | 0.573 | 6.03 | 80.8 | 2.505 | 1 | 273 | 21.0 | 396.9 | 7.88 | 22.5877 |\n",
"+---------+-----+-------+------+-------+-------+------+--------+-----+-----+---------+--------+-------+---------+"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%sqlflow\n",
"SELECT * FROM boston.predict;"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}