Skip to content

refine bilstm model #11

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 21 additions & 12 deletions sqlflow_models/lstmclassifier.py
Original file line number Diff line number Diff line change
@@ -1,29 +1,37 @@
import tensorflow as tf

class StackedBiLSTMClassifier(tf.keras.Model):
def __init__(self, feature_columns, units=64, stack_size=1, n_classes=2):
def __init__(self, feature_columns, stack_units=[32], hidden_size=64, n_classes=2):
"""StackedBiLSTMClassifier
:param feature_columns: All columns must be embedding of sequence column with same sequence_length.
:type feature_columns: list[tf.embedding_column].
:param units: Units for LSTM layer.
:type units: int.
:param stack_size: number of bidirectional LSTM layers in the stack, default 1.
:type stack_size: int.
:param stack_units: Units for LSTM layer.
:type stack_units: vector of ints.
:param n_classes: Target number of classes.
:type n_classes: int.
"""
super(StackedBiLSTMClassifier, self).__init__()

self.feature_layer = tf.keras.experimental.SequenceFeatures(feature_columns)
self.stack_bilstm = []
self.stack_size = stack_size
if stack_size > 1:
for i in range(stack_size - 1):
self.stack_size = len(stack_units)
self.stack_units = stack_units
self.n_classes = n_classes
if self.stack_size > 1:
for i in range(self.stack_size - 1):
self.stack_bilstm.append(
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(units, return_sequences=True))
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(self.stack_units[i], return_sequences=True))
)
self.lstm = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(units))
self.pred = tf.keras.layers.Dense(n_classes, activation='softmax')
self.lstm = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(self.stack_units[-1]))
self.hidden = tf.keras.layers.Dense(hidden_size, activation='relu')
if self.n_classes == 2:
# special setup for binary classification
pred_act = 'sigmoid'
self.loss = 'binary_crossentropy'
else:
pred_act = 'softmax'
self.loss = 'categorical_crossentropy'
self.pred = tf.keras.layers.Dense(n_classes, activation=pred_act)

def call(self, inputs):
x, seq_len = self.feature_layer(inputs)
Expand All @@ -32,6 +40,7 @@ def call(self, inputs):
for i in range(self.stack_size - 1):
x = self.stack_bilstm[i](x, mask=seq_mask)
x = self.lstm(x, mask=seq_mask)
x = self.hidden(x)
return self.pred(x)

def default_optimizer(self):
Expand All @@ -40,7 +49,7 @@ def default_optimizer(self):

def default_loss(self):
"""Default loss function. Used in model.compile."""
return 'categorical_crossentropy'
return self.loss

def default_training_epochs(self):
"""Default training epochs. Used in model.fit."""
Expand Down
2 changes: 1 addition & 1 deletion tests/test_lstm.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ def setUp(self):
fea,
dimension=32)
feature_columns = [emb]
self.model = sqlflow_models.StackedBiLSTMClassifier(feature_columns=feature_columns)
self.model = sqlflow_models.StackedBiLSTMClassifier(feature_columns=feature_columns, stack_units=[64, 32])


if __name__ == '__main__':
Expand Down