@@ -42,18 +42,30 @@ def test_ada_fit():
42
42
def test_ada_fit_sample ():
43
43
ada = ADASYN (random_state = RND_SEED )
44
44
X_resampled , y_resampled = ada .fit_sample (X , Y )
45
- X_gt = np .array ([[0.11622591 , - 0.0317206 ], [0.77481731 , 0.60935141 ],
46
- [1.25192108 , - 0.22367336 ], [0.53366841 , - 0.30312976 ],
47
- [1.52091956 , - 0.49283504 ], [- 0.28162401 , - 2.10400981 ],
48
- [0.83680821 , 1.72827342 ], [0.3084254 , 0.33299982 ],
49
- [0.70472253 , - 0.73309052 ], [0.28893132 , - 0.38761769 ],
50
- [1.15514042 , 0.0129463 ], [0.88407872 , 0.35454207 ],
51
- [1.31301027 , - 0.92648734 ], [- 1.11515198 , - 0.93689695 ],
52
- [- 0.18410027 , - 0.45194484 ], [0.9281014 , 0.53085498 ],
53
- [- 0.14374509 , 0.27370049 ], [- 0.41635887 , - 0.38299653 ],
54
- [0.08711622 , 0.93259929 ], [1.70580611 , - 0.11219234 ],
55
- [- 0.06182085 , - 0.28084828 ], [0.38614986 , - 0.35405599 ],
56
- [0.39635544 , 0.33629036 ], [- 0.24027923 , 0.04116021 ]])
45
+ X_gt = np .array ([[0.11622591 , - 0.0317206 ],
46
+ [0.77481731 , 0.60935141 ],
47
+ [1.25192108 , - 0.22367336 ],
48
+ [0.53366841 , - 0.30312976 ],
49
+ [1.52091956 , - 0.49283504 ],
50
+ [- 0.28162401 , - 2.10400981 ],
51
+ [0.83680821 , 1.72827342 ],
52
+ [0.3084254 , 0.33299982 ],
53
+ [0.70472253 , - 0.73309052 ],
54
+ [0.28893132 , - 0.38761769 ],
55
+ [1.15514042 , 0.0129463 ],
56
+ [0.88407872 , 0.35454207 ],
57
+ [1.31301027 , - 0.92648734 ],
58
+ [- 1.11515198 , - 0.93689695 ],
59
+ [- 0.18410027 , - 0.45194484 ],
60
+ [0.9281014 , 0.53085498 ],
61
+ [- 0.14374509 , 0.27370049 ],
62
+ [- 0.41635887 , - 0.38299653 ],
63
+ [0.08711622 , 0.93259929 ],
64
+ [1.70580611 , - 0.11219234 ],
65
+ [0.36370445 , - 0.19262406 ],
66
+ [0.28204936 , - 0.13953426 ],
67
+ [0.39635544 , 0.33629036 ],
68
+ [0.35301481 , 0.25795516 ]])
57
69
y_gt = np .array ([
58
70
0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0
59
71
])
@@ -65,16 +77,26 @@ def test_ada_fit_sample_half():
65
77
ratio = 0.8
66
78
ada = ADASYN (ratio = ratio , random_state = RND_SEED )
67
79
X_resampled , y_resampled = ada .fit_sample (X , Y )
68
- X_gt = np .array ([[0.11622591 , - 0.0317206 ], [0.77481731 , 0.60935141 ],
69
- [1.25192108 , - 0.22367336 ], [0.53366841 , - 0.30312976 ],
70
- [1.52091956 , - 0.49283504 ], [- 0.28162401 , - 2.10400981 ],
71
- [0.83680821 , 1.72827342 ], [0.3084254 , 0.33299982 ],
72
- [0.70472253 , - 0.73309052 ], [0.28893132 , - 0.38761769 ],
73
- [1.15514042 , 0.0129463 ], [0.88407872 , 0.35454207 ],
74
- [1.31301027 , - 0.92648734 ], [- 1.11515198 , - 0.93689695 ],
75
- [- 0.18410027 , - 0.45194484 ], [0.9281014 , 0.53085498 ],
76
- [- 0.14374509 , 0.27370049 ], [- 0.41635887 , - 0.38299653 ],
77
- [0.08711622 , 0.93259929 ], [1.70580611 , - 0.11219234 ]])
80
+ X_gt = np .array ([[0.11622591 , - 0.0317206 ],
81
+ [0.77481731 , 0.60935141 ],
82
+ [1.25192108 , - 0.22367336 ],
83
+ [0.53366841 , - 0.30312976 ],
84
+ [1.52091956 , - 0.49283504 ],
85
+ [- 0.28162401 , - 2.10400981 ],
86
+ [0.83680821 , 1.72827342 ],
87
+ [0.3084254 , 0.33299982 ],
88
+ [0.70472253 , - 0.73309052 ],
89
+ [0.28893132 , - 0.38761769 ],
90
+ [1.15514042 , 0.0129463 ],
91
+ [0.88407872 , 0.35454207 ],
92
+ [1.31301027 , - 0.92648734 ],
93
+ [- 1.11515198 , - 0.93689695 ],
94
+ [- 0.18410027 , - 0.45194484 ],
95
+ [0.9281014 , 0.53085498 ],
96
+ [- 0.14374509 , 0.27370049 ],
97
+ [- 0.41635887 , - 0.38299653 ],
98
+ [0.08711622 , 0.93259929 ],
99
+ [1.70580611 , - 0.11219234 ]])
78
100
y_gt = np .array (
79
101
[0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 0 ])
80
102
assert_allclose (X_resampled , X_gt , rtol = R_TOL )
@@ -85,18 +107,30 @@ def test_ada_fit_sample_nn_obj():
85
107
nn = NearestNeighbors (n_neighbors = 6 )
86
108
ada = ADASYN (random_state = RND_SEED , n_neighbors = nn )
87
109
X_resampled , y_resampled = ada .fit_sample (X , Y )
88
- X_gt = np .array ([[0.11622591 , - 0.0317206 ], [0.77481731 , 0.60935141 ],
89
- [1.25192108 , - 0.22367336 ], [0.53366841 , - 0.30312976 ],
90
- [1.52091956 , - 0.49283504 ], [- 0.28162401 , - 2.10400981 ],
91
- [0.83680821 , 1.72827342 ], [0.3084254 , 0.33299982 ],
92
- [0.70472253 , - 0.73309052 ], [0.28893132 , - 0.38761769 ],
93
- [1.15514042 , 0.0129463 ], [0.88407872 , 0.35454207 ],
94
- [1.31301027 , - 0.92648734 ], [- 1.11515198 , - 0.93689695 ],
95
- [- 0.18410027 , - 0.45194484 ], [0.9281014 , 0.53085498 ],
96
- [- 0.14374509 , 0.27370049 ], [- 0.41635887 , - 0.38299653 ],
97
- [0.08711622 , 0.93259929 ], [1.70580611 , - 0.11219234 ],
98
- [- 0.06182085 , - 0.28084828 ], [0.38614986 , - 0.35405599 ],
99
- [0.39635544 , 0.33629036 ], [- 0.24027923 , 0.04116021 ]])
110
+ X_gt = np .array ([[0.11622591 , - 0.0317206 ],
111
+ [0.77481731 , 0.60935141 ],
112
+ [1.25192108 , - 0.22367336 ],
113
+ [0.53366841 , - 0.30312976 ],
114
+ [1.52091956 , - 0.49283504 ],
115
+ [- 0.28162401 , - 2.10400981 ],
116
+ [0.83680821 , 1.72827342 ],
117
+ [0.3084254 , 0.33299982 ],
118
+ [0.70472253 , - 0.73309052 ],
119
+ [0.28893132 , - 0.38761769 ],
120
+ [1.15514042 , 0.0129463 ],
121
+ [0.88407872 , 0.35454207 ],
122
+ [1.31301027 , - 0.92648734 ],
123
+ [- 1.11515198 , - 0.93689695 ],
124
+ [- 0.18410027 , - 0.45194484 ],
125
+ [0.9281014 , 0.53085498 ],
126
+ [- 0.14374509 , 0.27370049 ],
127
+ [- 0.41635887 , - 0.38299653 ],
128
+ [0.08711622 , 0.93259929 ],
129
+ [1.70580611 , - 0.11219234 ],
130
+ [0.36370445 , - 0.19262406 ],
131
+ [0.28204936 , - 0.13953426 ],
132
+ [0.39635544 , 0.33629036 ],
133
+ [0.35301481 , 0.25795516 ]])
100
134
y_gt = np .array ([
101
135
0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0
102
136
])
0 commit comments