|
| 1 | +use crate::*; |
| 2 | +use cauchy::*; |
| 3 | +use num_traits::Zero; |
| 4 | + |
| 5 | +/// Represents the LU factorization of a tridiagonal matrix `A` as `A = P*L*U`. |
| 6 | +#[derive(Clone, PartialEq)] |
| 7 | +pub struct LUFactorizedTridiagonal<A: Scalar> { |
| 8 | + /// A tridiagonal matrix which consists of |
| 9 | + /// - l : layout of raw matrix |
| 10 | + /// - dl: (n-1) multipliers that define the matrix L. |
| 11 | + /// - d : (n) diagonal elements of the upper triangular matrix U. |
| 12 | + /// - du: (n-1) elements of the first super-diagonal of U. |
| 13 | + pub a: Tridiagonal<A>, |
| 14 | + /// (n-2) elements of the second super-diagonal of U. |
| 15 | + pub du2: Vec<A>, |
| 16 | + /// The pivot indices that define the permutation matrix `P`. |
| 17 | + pub ipiv: Pivot, |
| 18 | + |
| 19 | + pub a_opnorm_one: A::Real, |
| 20 | +} |
| 21 | + |
| 22 | +impl<A: Scalar> Tridiagonal<A> { |
| 23 | + fn opnorm_one(&self) -> A::Real { |
| 24 | + let mut col_sum: Vec<A::Real> = self.d.iter().map(|val| val.abs()).collect(); |
| 25 | + for i in 0..col_sum.len() { |
| 26 | + if i < self.dl.len() { |
| 27 | + col_sum[i] += self.dl[i].abs(); |
| 28 | + } |
| 29 | + if i > 0 { |
| 30 | + col_sum[i] += self.du[i - 1].abs(); |
| 31 | + } |
| 32 | + } |
| 33 | + let mut max = A::Real::zero(); |
| 34 | + for &val in &col_sum { |
| 35 | + if max < val { |
| 36 | + max = val; |
| 37 | + } |
| 38 | + } |
| 39 | + max |
| 40 | + } |
| 41 | +} |
| 42 | + |
| 43 | +pub struct LuTridiagonalWork<T: Scalar> { |
| 44 | + pub layout: MatrixLayout, |
| 45 | + pub du2: Vec<MaybeUninit<T>>, |
| 46 | + pub ipiv: Vec<MaybeUninit<i32>>, |
| 47 | +} |
| 48 | + |
| 49 | +pub trait LuTridiagonalWorkImpl { |
| 50 | + type Elem: Scalar; |
| 51 | + fn new(layout: MatrixLayout) -> Self; |
| 52 | + fn eval(self, a: Tridiagonal<Self::Elem>) -> Result<LUFactorizedTridiagonal<Self::Elem>>; |
| 53 | +} |
| 54 | + |
| 55 | +macro_rules! impl_lu_tridiagonal_work { |
| 56 | + ($s:ty, $trf:path) => { |
| 57 | + impl LuTridiagonalWorkImpl for LuTridiagonalWork<$s> { |
| 58 | + type Elem = $s; |
| 59 | + |
| 60 | + fn new(layout: MatrixLayout) -> Self { |
| 61 | + let (n, _) = layout.size(); |
| 62 | + let du2 = vec_uninit((n - 2) as usize); |
| 63 | + let ipiv = vec_uninit(n as usize); |
| 64 | + LuTridiagonalWork { layout, du2, ipiv } |
| 65 | + } |
| 66 | + |
| 67 | + fn eval( |
| 68 | + mut self, |
| 69 | + mut a: Tridiagonal<Self::Elem>, |
| 70 | + ) -> Result<LUFactorizedTridiagonal<Self::Elem>> { |
| 71 | + let (n, _) = self.layout.size(); |
| 72 | + // We have to calc one-norm before LU factorization |
| 73 | + let a_opnorm_one = a.opnorm_one(); |
| 74 | + let mut info = 0; |
| 75 | + unsafe { |
| 76 | + $trf( |
| 77 | + &n, |
| 78 | + AsPtr::as_mut_ptr(&mut a.dl), |
| 79 | + AsPtr::as_mut_ptr(&mut a.d), |
| 80 | + AsPtr::as_mut_ptr(&mut a.du), |
| 81 | + AsPtr::as_mut_ptr(&mut self.du2), |
| 82 | + AsPtr::as_mut_ptr(&mut self.ipiv), |
| 83 | + &mut info, |
| 84 | + ) |
| 85 | + }; |
| 86 | + info.as_lapack_result()?; |
| 87 | + Ok(LUFactorizedTridiagonal { |
| 88 | + a, |
| 89 | + du2: unsafe { self.du2.assume_init() }, |
| 90 | + ipiv: unsafe { self.ipiv.assume_init() }, |
| 91 | + a_opnorm_one, |
| 92 | + }) |
| 93 | + } |
| 94 | + } |
| 95 | + }; |
| 96 | +} |
| 97 | + |
| 98 | +impl_lu_tridiagonal_work!(c64, lapack_sys::zgttrf_); |
| 99 | +impl_lu_tridiagonal_work!(c32, lapack_sys::cgttrf_); |
| 100 | +impl_lu_tridiagonal_work!(f64, lapack_sys::dgttrf_); |
| 101 | +impl_lu_tridiagonal_work!(f32, lapack_sys::sgttrf_); |
0 commit comments