|
| 1 | +use crate::*; |
| 2 | +use cauchy::*; |
| 3 | +use num_traits::Zero; |
| 4 | + |
| 5 | +pub struct RcondTridiagonalWork<T: Scalar> { |
| 6 | + pub work: Vec<MaybeUninit<T>>, |
| 7 | + pub iwork: Option<Vec<MaybeUninit<i32>>>, |
| 8 | +} |
| 9 | + |
| 10 | +pub trait RcondTridiagonalWorkImpl { |
| 11 | + type Elem: Scalar; |
| 12 | + fn new(layout: MatrixLayout) -> Self; |
| 13 | + fn calc( |
| 14 | + &mut self, |
| 15 | + lu: &LUFactorizedTridiagonal<Self::Elem>, |
| 16 | + ) -> Result<<Self::Elem as Scalar>::Real>; |
| 17 | +} |
| 18 | + |
| 19 | +macro_rules! impl_rcond_tridiagonal_work_c { |
| 20 | + ($c:ty, $gtcon:path) => { |
| 21 | + impl RcondTridiagonalWorkImpl for RcondTridiagonalWork<$c> { |
| 22 | + type Elem = $c; |
| 23 | + |
| 24 | + fn new(layout: MatrixLayout) -> Self { |
| 25 | + let (n, _) = layout.size(); |
| 26 | + let work = vec_uninit(2 * n as usize); |
| 27 | + RcondTridiagonalWork { work, iwork: None } |
| 28 | + } |
| 29 | + |
| 30 | + fn calc( |
| 31 | + &mut self, |
| 32 | + lu: &LUFactorizedTridiagonal<Self::Elem>, |
| 33 | + ) -> Result<<Self::Elem as Scalar>::Real> { |
| 34 | + let (n, _) = lu.a.l.size(); |
| 35 | + let ipiv = &lu.ipiv; |
| 36 | + let mut rcond = <Self::Elem as Scalar>::Real::zero(); |
| 37 | + let mut info = 0; |
| 38 | + unsafe { |
| 39 | + $gtcon( |
| 40 | + NormType::One.as_ptr(), |
| 41 | + &n, |
| 42 | + AsPtr::as_ptr(&lu.a.dl), |
| 43 | + AsPtr::as_ptr(&lu.a.d), |
| 44 | + AsPtr::as_ptr(&lu.a.du), |
| 45 | + AsPtr::as_ptr(&lu.du2), |
| 46 | + ipiv.as_ptr(), |
| 47 | + &lu.a_opnorm_one, |
| 48 | + &mut rcond, |
| 49 | + AsPtr::as_mut_ptr(&mut self.work), |
| 50 | + &mut info, |
| 51 | + ); |
| 52 | + } |
| 53 | + info.as_lapack_result()?; |
| 54 | + Ok(rcond) |
| 55 | + } |
| 56 | + } |
| 57 | + }; |
| 58 | +} |
| 59 | + |
| 60 | +impl_rcond_tridiagonal_work_c!(c64, lapack_sys::zgtcon_); |
| 61 | +impl_rcond_tridiagonal_work_c!(c32, lapack_sys::cgtcon_); |
| 62 | + |
| 63 | +macro_rules! impl_rcond_tridiagonal_work_r { |
| 64 | + ($c:ty, $gtcon:path) => { |
| 65 | + impl RcondTridiagonalWorkImpl for RcondTridiagonalWork<$c> { |
| 66 | + type Elem = $c; |
| 67 | + |
| 68 | + fn new(layout: MatrixLayout) -> Self { |
| 69 | + let (n, _) = layout.size(); |
| 70 | + let work = vec_uninit(2 * n as usize); |
| 71 | + let iwork = vec_uninit(n as usize); |
| 72 | + RcondTridiagonalWork { |
| 73 | + work, |
| 74 | + iwork: Some(iwork), |
| 75 | + } |
| 76 | + } |
| 77 | + |
| 78 | + fn calc( |
| 79 | + &mut self, |
| 80 | + lu: &LUFactorizedTridiagonal<Self::Elem>, |
| 81 | + ) -> Result<<Self::Elem as Scalar>::Real> { |
| 82 | + let (n, _) = lu.a.l.size(); |
| 83 | + let mut rcond = <Self::Elem as Scalar>::Real::zero(); |
| 84 | + let mut info = 0; |
| 85 | + unsafe { |
| 86 | + $gtcon( |
| 87 | + NormType::One.as_ptr(), |
| 88 | + &n, |
| 89 | + AsPtr::as_ptr(&lu.a.dl), |
| 90 | + AsPtr::as_ptr(&lu.a.d), |
| 91 | + AsPtr::as_ptr(&lu.a.du), |
| 92 | + AsPtr::as_ptr(&lu.du2), |
| 93 | + AsPtr::as_ptr(&lu.ipiv), |
| 94 | + &lu.a_opnorm_one, |
| 95 | + &mut rcond, |
| 96 | + AsPtr::as_mut_ptr(&mut self.work), |
| 97 | + AsPtr::as_mut_ptr(self.iwork.as_mut().unwrap()), |
| 98 | + &mut info, |
| 99 | + ); |
| 100 | + } |
| 101 | + info.as_lapack_result()?; |
| 102 | + Ok(rcond) |
| 103 | + } |
| 104 | + } |
| 105 | + }; |
| 106 | +} |
| 107 | + |
| 108 | +impl_rcond_tridiagonal_work_r!(f64, lapack_sys::dgtcon_); |
| 109 | +impl_rcond_tridiagonal_work_r!(f32, lapack_sys::sgtcon_); |
0 commit comments