Skip to content

Add the ability to benchmark throughput using multiple threads #359

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Nov 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions benchmarks/decoders/benchmark_decoders.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@

from benchmark_decoders_library import (
AbstractDecoder,
BatchParameters,
DecordAccurate,
DecordAccurateBatch,
plot_data,
Expand Down Expand Up @@ -173,6 +174,7 @@ def main() -> None:
num_sequential_frames_from_start=[1, 10, 100],
min_runtime_seconds=args.bm_video_speed_min_run_seconds,
benchmark_video_creation=args.bm_video_creation,
batch_parameters=BatchParameters(num_threads=8, batch_size=40),
)
plot_data(df_data, args.plot_path)

Expand Down
139 changes: 115 additions & 24 deletions benchmarks/decoders/benchmark_decoders_library.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
import subprocess
import urllib.request
from concurrent.futures import ThreadPoolExecutor, wait
from dataclasses import dataclass
from itertools import product
from pathlib import Path

Expand Down Expand Up @@ -479,13 +480,51 @@ def get_metadata(video_file_path: str) -> VideoStreamMetadata:
return VideoDecoder(video_file_path).metadata


@dataclass
class BatchParameters:
num_threads: int
batch_size: int


def run_batch_using_threads(
function,
*args,
batch_parameters: BatchParameters = BatchParameters(num_threads=8, batch_size=40),
):
executor = ThreadPoolExecutor(max_workers=batch_parameters.num_threads)
futures = []
for _ in range(batch_parameters.batch_size):
futures.append(executor.submit(function, *args))
for f in futures:
assert f.result()
executor.shutdown(wait=True)


def convert_result_to_df_item(
result, decoder_name, video_file_path, num_samples, decode_pattern
):
df_item = {}
df_item["decoder"] = decoder_name
df_item["video"] = str(video_file_path)
df_item["description"] = result.description
df_item["frame_count"] = num_samples
df_item["median"] = result.median
df_item["iqr"] = result.iqr
df_item["type"] = decode_pattern
df_item["fps_median"] = num_samples / result.median
df_item["fps_p75"] = num_samples / result._p75
df_item["fps_p25"] = num_samples / result._p25
return df_item


def run_benchmarks(
decoder_dict: dict[str, AbstractDecoder],
video_files_paths: list[Path],
num_samples: int,
num_sequential_frames_from_start: list[int],
min_runtime_seconds: float,
benchmark_video_creation: bool,
batch_parameters: BatchParameters = None,
) -> list[dict[str, str | float | int]]:
# Ensure that we have the same seed across benchmark runs.
torch.manual_seed(0)
Expand Down Expand Up @@ -532,18 +571,44 @@ def run_benchmarks(
results.append(
seeked_result.blocked_autorange(min_run_time=min_runtime_seconds)
)
df_item = {}
df_item["decoder"] = decoder_name
df_item["video"] = str(video_file_path)
df_item["description"] = results[-1].description
df_item["frame_count"] = num_samples
df_item["median"] = results[-1].median
df_item["iqr"] = results[-1].iqr
df_item["type"] = f"{kind}:seek()+next()"
df_item["fps_median"] = num_samples / results[-1].median
df_item["fps_p75"] = num_samples / results[-1]._p75
df_item["fps_p25"] = num_samples / results[-1]._p25
df_data.append(df_item)
df_data.append(
convert_result_to_df_item(
results[-1],
decoder_name,
video_file_path,
num_samples,
f"{kind} seek()+next()",
)
)

if batch_parameters:
seeked_result = benchmark.Timer(
stmt="run_batch_using_threads(decoder.get_frames_from_video, video_file, pts_list, batch_parameters=batch_parameters)",
globals={
"video_file": str(video_file_path),
"pts_list": pts_list,
"decoder": decoder,
"run_batch_using_threads": run_batch_using_threads,
"batch_parameters": batch_parameters,
},
label=f"video={video_file_path} {metadata_label}",
sub_label=decoder_name,
description=f"batch {kind} {num_samples} seek()+next()",
)
results.append(
seeked_result.blocked_autorange(
min_run_time=min_runtime_seconds
)
)
df_data.append(
convert_result_to_df_item(
results[-1],
decoder_name,
video_file_path,
num_samples * batch_parameters.batch_size,
f"batch {kind} seek()+next()",
)
)

for num_consecutive_nexts in num_sequential_frames_from_start:
consecutive_frames_result = benchmark.Timer(
Expand All @@ -562,18 +627,44 @@ def run_benchmarks(
min_run_time=min_runtime_seconds
)
)
df_item = {}
df_item["decoder"] = decoder_name
df_item["video"] = str(video_file_path)
df_item["description"] = results[-1].description
df_item["frame_count"] = num_consecutive_nexts
df_item["median"] = results[-1].median
df_item["iqr"] = results[-1].iqr
df_item["type"] = "next()"
df_item["fps_median"] = num_consecutive_nexts / results[-1].median
df_item["fps_p75"] = num_consecutive_nexts / results[-1]._p75
df_item["fps_p25"] = num_consecutive_nexts / results[-1]._p25
df_data.append(df_item)
df_data.append(
convert_result_to_df_item(
results[-1],
decoder_name,
video_file_path,
num_consecutive_nexts,
f"{num_consecutive_nexts} next()",
)
)

if batch_parameters:
consecutive_frames_result = benchmark.Timer(
stmt="run_batch_using_threads(decoder.get_consecutive_frames_from_video, video_file, consecutive_frames_to_extract, batch_parameters=batch_parameters)",
globals={
"video_file": str(video_file_path),
"consecutive_frames_to_extract": num_consecutive_nexts,
"decoder": decoder,
"run_batch_using_threads": run_batch_using_threads,
"batch_parameters": batch_parameters,
},
label=f"video={video_file_path} {metadata_label}",
sub_label=decoder_name,
description=f"batch {num_consecutive_nexts} next()",
)
results.append(
consecutive_frames_result.blocked_autorange(
min_run_time=min_runtime_seconds
)
)
df_data.append(
convert_result_to_df_item(
results[-1],
decoder_name,
video_file_path,
num_consecutive_nexts * batch_parameters.batch_size,
f"batch {num_consecutive_nexts} next()",
)
)

first_video_file_path = video_files_paths[0]
if benchmark_video_creation:
Expand Down
Loading