Skip to content

Test for sofia #1053

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 15 commits into
base: site
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
62 changes: 62 additions & 0 deletions _posts/2022-5-18-testing-for-push.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
---
layout: blog_detail
title: "Test"
author: PyTorch
featured-img: "/assets/images/METAPT-002-BarGraph-02-static.png"
---

Let's test using github.dev

<p align="center">
<img src="/assets/images/intro-graphic-accelerated-pytorch-training-revised.png" width="100%">
</p>

## Metal Acceleration

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent fringilla aliquet gravida. Curabitur mattis tempus odio sit amet maximus. Pellentesque aliquam leo at diam gravida porttitor. Nunc eu nibh ut elit vestibulum sodales. Nullam imperdiet vestibulum felis a commodo. Fusce sit amet dapibus lectus, quis tristique sem. Duis vel egestas nulla. Duis at vehicula libero.

## Training Benefits on Apple Silicon

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent fringilla aliquet gravida. Curabitur mattis tempus odio sit amet maximus. Pellentesque aliquam leo at diam gravida porttitor. Nunc eu nibh ut elit vestibulum sodales. Nullam imperdiet vestibulum felis a commodo. Fusce sit amet dapibus lectus, quis tristique sem. Duis vel egestas nulla. Duis at vehicula libero.

## Metal Acceleration

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent fringilla aliquet gravida. Curabitur mattis tempus odio sit amet maximus. Pellentesque aliquam leo at diam gravida porttitor. Nunc eu nibh ut elit vestibulum sodales. Nullam imperdiet vestibulum felis a commodo. Fusce sit amet dapibus lectus, quis tristique sem. Duis vel egestas nulla. Duis at vehicula libero.

## Training Benefits on Apple Silicon

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent fringilla aliquet gravida. Curabitur mattis tempus odio sit amet maximus. Pellentesque aliquam leo at diam gravida porttitor. Nunc eu nibh ut elit vestibulum sodales. Nullam imperdiet vestibulum felis a commodo. Fusce sit amet dapibus lectus, quis tristique sem. Duis vel egestas nulla. Duis at vehicula libero.

<p align="center">
<img src="/assets/images/applause.gif" width="100%">
</p>

<p align="center">
Figure 1: Correspondence of `backward`/`grad` arguments in the graphs.
</p>

<p align="center">
The Encoder Structure of the Transformer <br>
Architecture Taken from "<a href="https://arxiv.org/abs/1706.03762" target="_blank">Attention Is All You Need</a>".
</p>

\-**Lorem ipsum**\- dolor sit amet, consectetur adipiscing elit. Praesent fringilla aliquet gravida. Curabitur mattis tempus odio sit amet maximus. Pellentesque aliquam leo at diam gravida porttitor. Nunc eu nibh ut elit vestibulum sodales. Nullam imperdiet vestibulum felis a commodo. Fusce sit amet dapibus lectus, quis tristique sem. Duis vel egestas nulla. Duis at vehicula libero.

**Lorem ipsum** dolor sit amet, consectetur adipiscing elit. Praesent fringilla aliquet gravida. Curabitur mattis tempus odio sit amet maximus. Pellentesque aliquam leo at diam gravida porttitor. Nunc eu nibh ut elit vestibulum sodales. Nullam imperdiet vestibulum felis a commodo. Fusce sit amet dapibus lectus, quis tristique sem. Duis vel egestas nulla. Duis at vehicula libero.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent fringilla aliquet gravida. Curabitur mattis tempus odio sit amet maximus. Pellentesque aliquam leo at diam gravida porttitor. Nunc eu nibh ut elit vestibulum sodales. Nullam imperdiet vestibulum felis a commodo. Fusce sit amet dapibus lectus, quis tristique sem. Duis vel egestas nulla. Duis at vehicula libero.

## References

[1] Davison, Beth A., Stephen A. Harrison, Gad Cotter, Naim Alkhouri, Arun Sanyal, Christopher Edwards, Jerry R. Colca, Julie Iwashita, Gary G. Koch, and Howard C. Dittrich. 2020. “Suboptimal Reliability of Liver Biopsy Evaluation Has Implications for Randomized Clinical Trials.” Journal of Hepatology 73 (6): 1322–32.

[2] Pathologists’ diagnosis of invasive melanoma and melanocytic proliferations: observer accuracy and reproducibility study, [https://www.bmj.com/content/357/bmj.j2813.full](https://www.bmj.com/content/357/bmj.j2813.full)

[3] [https://openaccess.thecvf.com/content/CVPR2022W/CVMI/papers/Dwivedi_Multi_Stain_Graph_Fusion_for_Multimodal \_Integration_in_Pathology_CVPRW_2022_paper.pdf](https://openaccess.thecvf.com/content/CVPR2022W/CVMI/papers/Dwivedi_Multi_Stain_Graph_Fusion_for_Multimodal_Integration_in_Pathology_CVPRW_2022_paper.pdf)

[4] Ciyue Shen, Collin Schlager, Deepta Rajan, Maryam Pouryahya, Mary Lin, Victoria Mountain, Ilan Wapinski, Amaro Taylor-Weiner, Benjamin Glass, Robert Egger, Andrew Beck. Application of an interpretable graph neural network to predict gene expression signatures associated with tertiary lymphoid structures in histopathological images [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research; 2022 Apr 8–13; New Orleans, LA. Philadelphia (PA): AACR; 2022. Abstract nr 1922.

[5] [https://proceedings.mlr.press/v156/jaume21a/jaume21a.pdf](https://proceedings.mlr.press/v156/jaume21a/jaume21a.pdf)

[6] [https://openaccess.thecvf.com/content_CVPRW_2020/papers/w16/Lu_Capturing_Cellular_Topology_in_Multi-Gigapixel_Pathology_Images_CVPRW_2020_paper.pdf](https://openaccess.thecvf.com/content_CVPRW_2020/papers/w16/Lu_Capturing_Cellular_Topology_in_Multi-Gigapixel_Pathology_Images_CVPRW_2020_paper.pdf)

[7] Javed, S. A., Juyal, D., Padigela, H., Taylor-Weiner, A., Yu, L., & Prakash, A. (2022). Additive MIL: Intrinsic Interpretability for Pathology. arXiv preprint arXiv:2206.01794.
Binary file added assets/images/applause.gif
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.