Skip to content

Update to save trained model #444

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 31 additions & 3 deletions mnist/main.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,27 @@
from __future__ import print_function
import argparse
import errno
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms


def makedir_exist_ok(dirpath):
"""
Python2 support for os.makedirs(.., exist_ok=True)
"""
try:
os.makedirs(dirpath)
except OSError as e:
if e.errno == errno.EEXIST:
pass
else:
raise


class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
Expand Down Expand Up @@ -55,6 +71,13 @@ def test(args, model, device, test_loader):
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))


def save_model(args, model):
makedir_exist_ok(args.result_dir)
path = os.path.join(args.result_dir, 'models.pt')
torch.save(model.state_dict(), path)


def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
Expand All @@ -74,6 +97,10 @@ def main():
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--data-dir', type=str, default='../data',
help='location holding the training and test data.')
parser.add_argument('--result-dir', type=str, default='../data',
help='location to save training results.')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()

Expand All @@ -83,14 +110,14 @@ def main():

kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
datasets.MNIST(args.data_dir, train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
datasets.MNIST(args.data_dir, train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
Expand All @@ -104,6 +131,7 @@ def main():
train(args, model, device, train_loader, optimizer, epoch)
test(args, model, device, test_loader)

save_model(args, model)

if __name__ == '__main__':
main()
main()