Skip to content

SAC supports parallel environments #17

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
374 changes: 374 additions & 0 deletions leanrl/sac_vecenv_continuous_action_torchcompile.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,374 @@
# ruff: noqa
# docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/sac/#sac_continuous_actionpy
import os

os.environ["TORCHDYNAMO_INLINE_INBUILT_NN_MODULES"] = "1"

import math
import os
import random
import time
from collections import deque
from dataclasses import dataclass

import gymnasium as gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import tqdm
import tyro
import wandb
from tensordict import TensorDict, from_module, from_modules
from tensordict.nn import CudaGraphModule, TensorDictModule

# from stable_baselines3.common.buffers import ReplayBuffer
from torchrl.data import LazyTensorStorage, ReplayBuffer


@dataclass
class Args:
exp_name: str = os.path.basename(__file__)[: -len(".py")]
"""the name of this experiment"""
seed: int = 1
"""seed of the experiment"""
torch_deterministic: bool = True
"""if toggled, `torch.backends.cudnn.deterministic=False`"""
cuda: bool = True
"""if toggled, cuda will be enabled by default"""
capture_video: bool = False
"""whether to capture videos of the agent performances (check out `videos` folder)"""
num_envs: int = 1
"""number of parallel environments"""

# Algorithm specific arguments
env_id: str = "HalfCheetah-v4"
"""the environment id of the task"""
total_timesteps: int = 1000000
"""total timesteps of the experiments"""
buffer_size: int = int(1e6)
"""the replay memory buffer size"""
gamma: float = 0.99
"""the discount factor gamma"""
tau: float = 0.005
"""target smoothing coefficient (default: 0.005)"""
batch_size: int = 256
"""the batch size of sample from the reply memory"""
learning_starts: int = 5e3
"""timestep to start learning"""
policy_lr: float = 3e-4
"""the learning rate of the policy network optimizer"""
q_lr: float = 1e-3
"""the learning rate of the Q network network optimizer"""
policy_frequency: int = 2
"""the frequency of training policy (delayed)"""
target_network_frequency: int = 1 # Denis Yarats' implementation delays this by 2.
"""the frequency of updates for the target nerworks"""
alpha: float = 0.2
"""Entropy regularization coefficient."""
autotune: bool = True
"""automatic tuning of the entropy coefficient"""

compile: bool = False
"""whether to use torch.compile."""
cudagraphs: bool = False
"""whether to use cudagraphs on top of compile."""

measure_burnin: int = 3
"""Number of burn-in iterations for speed measure."""


def make_env(env_id, seed, idx, capture_video, run_name):
def thunk():
if capture_video and idx == 0:
env = gym.make(env_id, render_mode="rgb_array")
env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
else:
env = gym.make(env_id)
env = gym.wrappers.RecordEpisodeStatistics(env)
env.action_space.seed(seed)
return env

return thunk


# ALGO LOGIC: initialize agent here:
class SoftQNetwork(nn.Module):
def __init__(self, env, n_act, n_obs, device=None):
super().__init__()
self.fc1 = nn.Linear(n_act + n_obs, 256, device=device)
self.fc2 = nn.Linear(256, 256, device=device)
self.fc3 = nn.Linear(256, 1, device=device)

def forward(self, x, a):
x = torch.cat([x, a], 1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x


LOG_STD_MAX = 2
LOG_STD_MIN = -5


class Actor(nn.Module):
def __init__(self, env, n_obs, n_act, device=None):
super().__init__()
self.fc1 = nn.Linear(n_obs, 256, device=device)
self.fc2 = nn.Linear(256, 256, device=device)
self.fc_mean = nn.Linear(256, n_act, device=device)
self.fc_logstd = nn.Linear(256, n_act, device=device)
# action rescaling
action_space = env.single_action_space
self.register_buffer(
"action_scale",
torch.tensor((action_space.high - action_space.low) / 2.0, dtype=torch.float32, device=device),
)
self.register_buffer(
"action_bias",
torch.tensor((action_space.high + action_space.low) / 2.0, dtype=torch.float32, device=device),
)

def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
mean = self.fc_mean(x)
log_std = self.fc_logstd(x)
log_std = torch.tanh(log_std)
log_std = LOG_STD_MIN + 0.5 * (LOG_STD_MAX - LOG_STD_MIN) * (log_std + 1) # From SpinUp / Denis Yarats

return mean, log_std

def get_action(self, x):
mean, log_std = self(x)
std = log_std.exp()
normal = torch.distributions.Normal(mean, std)
x_t = normal.rsample() # for reparameterization trick (mean + std * N(0,1))
y_t = torch.tanh(x_t)
action = y_t * self.action_scale + self.action_bias
log_prob = normal.log_prob(x_t)
# Enforcing Action Bound
log_prob -= torch.log(self.action_scale * (1 - y_t.pow(2)) + 1e-6)
log_prob = log_prob.sum(1, keepdim=True)
mean = torch.tanh(mean) * self.action_scale + self.action_bias
return action, log_prob, mean


if __name__ == "__main__":
args = tyro.cli(Args)
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{args.compile}__{args.cudagraphs}"

wandb.init(
project="rarlet",
name=f"{os.path.splitext(os.path.basename(__file__))[0]}-{run_name}",
config=vars(args),
save_code=True,
)

# TRY NOT TO MODIFY: seeding
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministic

device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")

# env setup
envs = gym.vector.SyncVectorEnv(
[make_env(args.env_id, args.seed + i, 0, args.capture_video, run_name) for i in range(args.num_envs)],
autoreset_mode=gym.vector.AutoresetMode.SAME_STEP,
)
n_act = math.prod(envs.single_action_space.shape)
n_obs = math.prod(envs.single_observation_space.shape)
assert isinstance(envs.single_action_space, gym.spaces.Box), "only continuous action space is supported"

max_action = float(envs.single_action_space.high[0])

actor = Actor(envs, device=device, n_act=n_act, n_obs=n_obs)
actor_detach = Actor(envs, device=device, n_act=n_act, n_obs=n_obs)
# Copy params to actor_detach without grad
from_module(actor).data.to_module(actor_detach)
policy = TensorDictModule(actor_detach.get_action, in_keys=["observation"], out_keys=["action"])

def get_q_params():
qf1 = SoftQNetwork(envs, device=device, n_act=n_act, n_obs=n_obs)
qf2 = SoftQNetwork(envs, device=device, n_act=n_act, n_obs=n_obs)
qnet_params = from_modules(qf1, qf2, as_module=True)
qnet_target = qnet_params.data.clone()

# discard params of net
qnet = SoftQNetwork(envs, device="meta", n_act=n_act, n_obs=n_obs)
qnet_params.to_module(qnet)

return qnet_params, qnet_target, qnet

qnet_params, qnet_target, qnet = get_q_params()

q_optimizer = optim.Adam(qnet.parameters(), lr=args.q_lr, capturable=args.cudagraphs and not args.compile)
actor_optimizer = optim.Adam(list(actor.parameters()), lr=args.policy_lr, capturable=args.cudagraphs and not args.compile)

# Automatic entropy tuning
if args.autotune:
target_entropy = -torch.prod(torch.Tensor(envs.single_action_space.shape).to(device)).item()
log_alpha = torch.zeros(1, requires_grad=True, device=device)
alpha = log_alpha.detach().exp()
a_optimizer = optim.Adam([log_alpha], lr=args.q_lr, capturable=args.cudagraphs and not args.compile)
else:
alpha = torch.as_tensor(args.alpha, device=device)

envs.single_observation_space.dtype = np.float32
rb = ReplayBuffer(storage=LazyTensorStorage(args.buffer_size // args.num_envs, device=device))

def batched_qf(params, obs, action, next_q_value=None):
with params.to_module(qnet):
vals = qnet(obs, action)
if next_q_value is not None:
loss_val = F.mse_loss(vals.view(-1), next_q_value)
return loss_val
return vals

def update_main(data):
# optimize the model
q_optimizer.zero_grad()
with torch.no_grad():
next_state_actions, next_state_log_pi, _ = actor.get_action(data["next_observations"])
qf_next_target = torch.vmap(batched_qf, (0, None, None))(qnet_target, data["next_observations"], next_state_actions)
min_qf_next_target = qf_next_target.min(dim=0).values - alpha * next_state_log_pi
next_q_value = data["rewards"].flatten() + (~data["dones"].flatten()).float() * args.gamma * min_qf_next_target.view(-1)

qf_a_values = torch.vmap(batched_qf, (0, None, None, None))(qnet_params, data["observations"], data["actions"], next_q_value)
qf_loss = qf_a_values.sum(0)

qf_loss.backward()
q_optimizer.step()
return TensorDict(qf_loss=qf_loss.detach())

def update_pol(data):
actor_optimizer.zero_grad()
pi, log_pi, _ = actor.get_action(data["observations"])
qf_pi = torch.vmap(batched_qf, (0, None, None))(qnet_params.data, data["observations"], pi)
min_qf_pi = qf_pi.min(0).values
actor_loss = ((alpha * log_pi) - min_qf_pi).mean()

actor_loss.backward()
actor_optimizer.step()

if args.autotune:
a_optimizer.zero_grad()
with torch.no_grad():
_, log_pi, _ = actor.get_action(data["observations"])
alpha_loss = (-log_alpha.exp() * (log_pi + target_entropy)).mean()

alpha_loss.backward()
a_optimizer.step()
return TensorDict(alpha=alpha.detach(), actor_loss=actor_loss.detach(), alpha_loss=alpha_loss.detach())

def extend_and_sample(transition):
rb.extend(transition)
return rb.sample(args.batch_size)

is_extend_compiled = False
if args.compile:
mode = None # "reduce-overhead" if not args.cudagraphs else None
update_main = torch.compile(update_main, mode=mode)
update_pol = torch.compile(update_pol, mode=mode)
policy = torch.compile(policy, mode=mode)

if args.cudagraphs:
update_main = CudaGraphModule(update_main, in_keys=[], out_keys=[])
update_pol = CudaGraphModule(update_pol, in_keys=[], out_keys=[])
# policy = CudaGraphModule(policy)

# TRY NOT TO MODIFY: start the game
obs, _ = envs.reset(seed=args.seed)
obs = torch.as_tensor(obs, device=device, dtype=torch.float)
num_iterations = int(args.total_timesteps // args.num_envs)
pbar = tqdm.tqdm(range(num_iterations))
start_time = None
max_ep_ret = -float("inf")
avg_returns = deque(maxlen=20)
desc = ""
episode_start = np.zeros(envs.num_envs, dtype=bool)

for iter_indx in pbar:
global_step = iter_indx * args.num_envs
if global_step >= args.measure_burnin + args.learning_starts and start_time is None:
start_time = time.time()
measure_burnin = global_step

# ALGO LOGIC: put action logic here
if global_step < args.learning_starts:
actions = np.array([envs.single_action_space.sample() for _ in range(envs.num_envs)])
else:
actions = policy(obs)
actions = actions.cpu().numpy()

# TRY NOT TO MODIFY: execute the game and log data.
next_obs, rewards, terminations, truncations, infos = envs.step(actions)

# TRY NOT TO MODIFY: record rewards for plotting purposes
if "final_info" in infos:
for r in infos["final_info"]["episode"]["r"]:
r = float(r)
max_ep_ret = max(max_ep_ret, r)
avg_returns.append(r)
desc = f"global_step={global_step}, episodic_return={torch.tensor(avg_returns).mean(): 4.2f} (max={max_ep_ret: 4.2f})"

# TRY NOT TO MODIFY: save data to reply buffer; handle `final_observation`
next_obs = torch.as_tensor(next_obs, device=device, dtype=torch.float)
real_next_obs = next_obs.clone()
for idx, trunc in enumerate(truncations):
if trunc:
real_next_obs[idx] = torch.as_tensor(infos["final_obs"][idx], device=device, dtype=torch.float)

transition = TensorDict(
observations=obs,
next_observations=real_next_obs,
actions=torch.as_tensor(actions, device=device, dtype=torch.float),
rewards=torch.as_tensor(rewards, device=device, dtype=torch.float),
terminations=terminations,
dones=terminations,
batch_size=obs.shape[0],
device=device,
)

# TRY NOT TO MODIFY: CRUCIAL step easy to overlook
obs = next_obs
episode_start = np.logical_or(terminations, truncations)
data = extend_and_sample(transition)

# ALGO LOGIC: training.
if global_step > args.learning_starts:
out_main = update_main(data)
if global_step % args.policy_frequency == 0: # TD 3 Delayed update support
for _ in range(args.policy_frequency): # compensate for the delay by doing 'actor_update_interval' instead of 1
out_main.update(update_pol(data))

alpha.copy_(log_alpha.detach().exp())

# update the target networks
if iter_indx % args.target_network_frequency == 0:
# lerp is defined as x' = x + w (y-x), which is equivalent to x' = (1-w) x + w y
qnet_target.lerp_(qnet_params.data, args.tau)

if iter_indx % (max(1, 100 // args.num_envs)) == 0 and start_time is not None:
speed = (global_step - measure_burnin) / (time.time() - start_time)
pbar.set_description(f"{speed: 4.4f} sps, " + desc)
with torch.no_grad():
logs = {
"episode_return": torch.tensor(avg_returns).mean(),
"actor_loss": out_main["actor_loss"].mean(),
"alpha_loss": out_main.get("alpha_loss", 0),
"qf_loss": out_main["qf_loss"].mean(),
}
wandb.log(
{
"speed": speed,
**logs,
},
step=global_step,
)

envs.close()