Skip to content

Add Pytorch implementation of Blockwise #988

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Nov 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions pytensor/link/pytorch/dispatch/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,4 +11,5 @@
import pytensor.link.pytorch.dispatch.shape
import pytensor.link.pytorch.dispatch.sort
import pytensor.link.pytorch.dispatch.subtensor
import pytensor.link.pytorch.dispatch.blockwise
# isort: on
32 changes: 32 additions & 0 deletions pytensor/link/pytorch/dispatch/blockwise.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
import torch
import torch.compiler

from pytensor.graph import FunctionGraph
from pytensor.link.pytorch.dispatch import pytorch_funcify
from pytensor.tensor.blockwise import Blockwise


@pytorch_funcify.register(Blockwise)
def funcify_Blockwise(op: Blockwise, node, *args, **kwargs):
batched_dims = op.batch_ndim(node)
core_node = op._create_dummy_core_node(node.inputs)
core_fgraph = FunctionGraph(inputs=core_node.inputs, outputs=core_node.outputs)
inner_func = pytorch_funcify(core_fgraph, squeeze_output=len(node.outputs) == 1)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

squeeze_output always works no?


for _ in range(batched_dims):
inner_func = torch.vmap(inner_func)

@torch.compiler.disable(recursive=False)
def batcher(*inputs):
op._check_runtime_broadcast(node, inputs)
# broadcast on batched_dims
all_batched_dims = tuple(t.shape[:batched_dims] for t in inputs)
batched_shape = torch.broadcast_shapes(*all_batched_dims)
broadcast_inputs = [
torch.broadcast_to(i, batched_shape + i.shape[batched_dims:])
for i in inputs
]
res = inner_func(*broadcast_inputs)
return res

return batcher
53 changes: 53 additions & 0 deletions tests/link/pytorch/test_blockwise.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
import numpy as np
import pytest

import pytensor
import pytensor.tensor as pt
from pytensor.graph.basic import Apply
from pytensor.graph.op import Op
from pytensor.tensor.blockwise import Blockwise


torch = pytest.importorskip("torch")
basic = pytest.importorskip("pytensor.link.pytorch.dispatch.basic")


class TestOp(Op):
gufunc_signature = "(m,n),(n,p)->(m,p)"

def __init__(self, final_shape):
super().__init__()
self.final_shape = final_shape
self.call_shapes = []

def make_node(self, *args):
return Apply(self, list(args), [pt.matrix("_", shape=self.final_shape)])

def perform(self, *_):
raise RuntimeError("In perform")


@basic.pytorch_funcify.register(TestOp)
def evaluate_test_op(op, **_):
@torch.compiler.disable(recursive=False)
def func(a, b):
op.call_shapes.extend(map(torch.Tensor.size, [a, b]))
return a @ b

return func


def test_blockwise_broadcast():
_x = np.random.rand(5, 1, 2, 3)
_y = np.random.rand(3, 3, 2)

x = pt.tensor4("x", shape=(5, 1, 2, 3))
y = pt.tensor3("y", shape=(3, 3, 2))
op = TestOp((2, 2))
z = Blockwise(op)(x, y)

f = pytensor.function([x, y], z, mode="PYTORCH")
res = f(_x, _y)
assert tuple(res.shape) == (5, 3, 2, 2)
np.testing.assert_allclose(res, _x @ _y)
assert op.call_shapes == [(2, 3), (3, 2)]
2 changes: 1 addition & 1 deletion tests/tensor/test_blockwise.py
Original file line number Diff line number Diff line change
Expand Up @@ -538,7 +538,7 @@ def core_scipy_fn(A, b):
A_val_copy, b_val_copy
)
np.testing.assert_allclose(
out, expected_out, atol=1e-6 if config.floatX == "float32" else 0
out, expected_out, atol=1e-5 if config.floatX == "float32" else 0
)

# Confirm input was destroyed
Expand Down
Loading