Closed
Description
with pm.Model() as m:
a = pm.HalfNormal('a', np.ones((3, 1)), shape=(3, 10))
a.random(point=m.test_point)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-35-a1da77da6c66> in <module>()
----> 1 a.random(point=m.test_point)
~/Documents/pymc3/pymc3/model.py in __call__(self, *args, **kwargs)
40
41 def __call__(self, *args, **kwargs):
---> 42 return getattr(self.obj, self.method_name)(*args, **kwargs)
43
44
~/Documents/pymc3/pymc3/distributions/continuous.py in random(self, point, size)
749 return generate_samples(stats.halfnorm.rvs, loc=0., scale=sd,
750 dist_shape=self.shape,
--> 751 size=size)
752
753 def logp(self, value):
~/Documents/pymc3/pymc3/distributions/distribution.py in generate_samples(generator, *args, **kwargs)
522 dist_shape: {dist_shape}
523 broadcast_shape: {broadcast_shape}
--> 524 '''.format(size=size, dist_shape=dist_shape, broadcast_shape=broadcast_shape))
525
526 # reshape samples here
TypeError: Attempted to generate values with incompatible shapes:
size: 1
dist_shape: (3, 10)
broadcast_shape: (3, 1)
I have a vague feeling this is something to do with broadcasting sigma
parameter in Normal/HalfNormal, I think I have seen it before...