-
-
Notifications
You must be signed in to change notification settings - Fork 64
Add Generalized Poisson distribution #143
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
# Copyright 2023 The PyMC Developers | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import numpy as np | ||
import pymc as pm | ||
from pymc.distributions.dist_math import check_parameters, factln, logpow | ||
from pymc.distributions.shape_utils import rv_size_is_none | ||
from pytensor import tensor as pt | ||
from pytensor.tensor.random.op import RandomVariable | ||
|
||
|
||
class GeneralizedPoissonRV(RandomVariable): | ||
name = "generalized_poisson" | ||
ndim_supp = 0 | ||
ndims_params = [0, 0] | ||
dtype = "int64" | ||
_print_name = ("GeneralizedPoisson", "\\operatorname{GeneralizedPoisson}") | ||
|
||
@classmethod | ||
def rng_fn(cls, rng, theta, lam, size): | ||
theta = np.asarray(theta) | ||
lam = np.asarray(lam) | ||
|
||
if size is not None: | ||
dist_size = size | ||
else: | ||
dist_size = np.broadcast_shapes(theta.shape, lam.shape) | ||
|
||
# A mix of 2 algorithms described by Famoye (1997) is used depending on parameter values | ||
# 0: Inverse method, computed on the log scale. Used when lam <= 0. | ||
# 1: Branching method. Used when lambda > 0. | ||
x = np.empty(dist_size) | ||
idxs_mask = np.broadcast_to(lam < 0, dist_size) | ||
if np.any(idxs_mask): | ||
x[idxs_mask] = cls._inverse_rng_fn(rng, theta, lam, dist_size, idxs_mask=idxs_mask)[ | ||
idxs_mask | ||
] | ||
idxs_mask = ~idxs_mask | ||
if np.any(idxs_mask): | ||
x[idxs_mask] = cls._branching_rng_fn(rng, theta, lam, dist_size, idxs_mask=idxs_mask)[ | ||
idxs_mask | ||
] | ||
return x | ||
|
||
@classmethod | ||
def _inverse_rng_fn(cls, rng, theta, lam, dist_size, idxs_mask): | ||
# We handle x/0 and log(0) issues with branching | ||
with np.errstate(divide="ignore", invalid="ignore"): | ||
log_u = np.log(rng.uniform(size=dist_size)) | ||
pos_lam = lam > 0 | ||
abs_log_lam = np.log(np.abs(lam)) | ||
theta_m_lam = theta - lam | ||
log_s = -theta | ||
log_p = log_s.copy() | ||
x_ = 0 | ||
x = np.zeros(dist_size) | ||
below_cutpoint = log_s < log_u | ||
while np.any(below_cutpoint[idxs_mask]): | ||
x_ += 1 | ||
x[below_cutpoint] += 1 | ||
log_c = np.log(theta_m_lam + lam * x_) | ||
# Compute log(1 + lam / C) | ||
log1p_lam_m_C = np.where( | ||
pos_lam, | ||
np.log1p(np.exp(abs_log_lam - log_c)), | ||
pm.math.log1mexp_numpy(abs_log_lam - log_c, negative_input=True), | ||
) | ||
log_p = log_c + log1p_lam_m_C * (x_ - 1) + log_p - np.log(x_) - lam | ||
log_s = np.logaddexp(log_s, log_p) | ||
below_cutpoint = log_s < log_u | ||
return x | ||
|
||
@classmethod | ||
def _branching_rng_fn(cls, rng, theta, lam, dist_size, idxs_mask): | ||
lam_ = np.abs(lam) # This algorithm is only valid for positive lam | ||
y = rng.poisson(theta, size=dist_size) | ||
x = y.copy() | ||
higher_than_zero = y > 0 | ||
while np.any(higher_than_zero[idxs_mask]): | ||
y = rng.poisson(lam_ * y) | ||
x[higher_than_zero] = x[higher_than_zero] + y[higher_than_zero] | ||
higher_than_zero = y > 0 | ||
return x | ||
|
||
|
||
generalized_poisson = GeneralizedPoissonRV() | ||
|
||
|
||
class GeneralizedPoisson(pm.distributions.Discrete): | ||
R""" | ||
Generalized Poisson. | ||
Used to model count data that can be either overdispersed or underdispersed. | ||
Offers greater flexibility than the standard Poisson which assumes equidispersion, | ||
where the mean is equal to the variance. | ||
The pmf of this distribution is | ||
|
||
.. math:: f(x \mid \mu, \lambda) = | ||
\frac{\mu (\mu + \lambda x)^{x-1} e^{-\mu - \lambda x}}{x!} | ||
======== ====================================== | ||
Support :math:`x \in \mathbb{N}_0` | ||
Mean :math:`\frac{\mu}{1 - \lambda}` | ||
Variance :math:`\frac{\mu}{(1 - \lambda)^3}` | ||
======== ====================================== | ||
|
||
Parameters | ||
---------- | ||
mu : tensor_like of float | ||
Mean parameter (mu > 0). | ||
lam : tensor_like of float | ||
Dispersion parameter (max(-1, -mu/4) <= lam <= 1). | ||
|
||
Notes | ||
----- | ||
When lam = 0, the Generalized Poisson reduces to the standard Poisson with the same mu. | ||
When lam < 0, the mean is greater than the variance (underdispersion). | ||
When lam > 0, the mean is less than the variance (overdispersion). | ||
|
||
References | ||
---------- | ||
The PMF is taken from [1] and the random generator function is adapted from [2]. | ||
.. [1] Consul, PoC, and Felix Famoye. "Generalized Poisson regression model." | ||
Communications in Statistics-Theory and Methods 21.1 (1992): 89-109. | ||
.. [2] Famoye, Felix. "Generalized Poisson random variate generation." American | ||
Journal of Mathematical and Management Sciences 17.3-4 (1997): 219-237. | ||
""" | ||
|
||
rv_op = generalized_poisson | ||
|
||
@classmethod | ||
def dist(cls, mu, lam, **kwargs): | ||
mu = pt.as_tensor_variable(mu) | ||
lam = pt.as_tensor_variable(lam) | ||
return super().dist([mu, lam], **kwargs) | ||
|
||
def moment(rv, size, mu, lam): | ||
mean = pt.floor(mu / (1 - lam)) | ||
if not rv_size_is_none(size): | ||
mean = pt.full(size, mean) | ||
return mean | ||
|
||
def logp(value, mu, lam): | ||
mu_lam_value = mu + lam * value | ||
logprob = np.log(mu) + logpow(mu_lam_value, value - 1) - mu_lam_value - factln(value) | ||
|
||
# Probability is 0 when value > m, where m is the largest positive integer for | ||
# which mu + m * lam > 0 (when lam < 0). | ||
logprob = pt.switch( | ||
pt.or_( | ||
mu_lam_value < 0, | ||
value < 0, | ||
), | ||
-np.inf, | ||
logprob, | ||
) | ||
|
||
return check_parameters( | ||
logprob, | ||
0 < mu, | ||
pt.abs(lam) <= 1, | ||
(-mu / 4) <= lam, | ||
msg="0 < mu, max(-1, -mu/4)) <= lam <= 1", | ||
) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
# Copyright 2023 The PyMC Developers | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import numpy as np | ||
import pymc as pm | ||
import pytensor | ||
import pytensor.tensor as pt | ||
import pytest | ||
import scipy.stats | ||
from pymc.logprob.utils import ParameterValueError | ||
from pymc.testing import ( | ||
BaseTestDistributionRandom, | ||
Domain, | ||
Rplus, | ||
assert_moment_is_expected, | ||
discrete_random_tester, | ||
) | ||
from pytensor import config | ||
|
||
from pymc_experimental.distributions import GeneralizedPoisson | ||
|
||
|
||
class TestGeneralizedPoisson: | ||
class TestRandomVariable(BaseTestDistributionRandom): | ||
pymc_dist = GeneralizedPoisson | ||
pymc_dist_params = {"mu": 4.0, "lam": 1.0} | ||
expected_rv_op_params = {"mu": 4.0, "lam": 1.0} | ||
tests_to_run = [ | ||
"check_pymc_params_match_rv_op", | ||
"check_rv_size", | ||
] | ||
|
||
def test_random_matches_poisson(self): | ||
discrete_random_tester( | ||
dist=self.pymc_dist, | ||
paramdomains={"mu": Rplus, "lam": Domain([0], edges=(None, None))}, | ||
ref_rand=lambda mu, lam, size: scipy.stats.poisson.rvs(mu, size=size), | ||
) | ||
|
||
@pytest.mark.parametrize("mu", (2.5, 20, 50)) | ||
def test_random_lam_expected_moments(self, mu): | ||
lam = np.array([-0.9, -0.7, -0.2, 0, 0.2, 0.7, 0.9]) | ||
dist = self.pymc_dist.dist(mu=mu, lam=lam, size=(10_000, len(lam))) | ||
draws = dist.eval() | ||
|
||
expected_mean = mu / (1 - lam) | ||
np.testing.assert_allclose(draws.mean(0), expected_mean, rtol=1e-1) | ||
|
||
expected_std = np.sqrt(mu / (1 - lam) ** 3) | ||
np.testing.assert_allclose(draws.std(0), expected_std, rtol=1e-1) | ||
|
||
def test_logp_matches_poisson(self): | ||
# We are only checking this distribution for lambda=0 where it's equivalent to Poisson. | ||
mu = pt.scalar("mu") | ||
lam = pt.scalar("lam") | ||
value = pt.vector("value", dtype="int64") | ||
|
||
logp = pm.logp(GeneralizedPoisson.dist(mu, lam), value) | ||
logp_fn = pytensor.function([value, mu, lam], logp) | ||
|
||
test_value = np.array([0, 1, 2, 30]) | ||
for test_mu in (0.01, 0.1, 0.9, 1, 1.5, 20, 100): | ||
np.testing.assert_allclose( | ||
logp_fn(test_value, test_mu, lam=0), | ||
scipy.stats.poisson.logpmf(test_value, test_mu), | ||
rtol=1e-7 if config.floatX == "float64" else 1e-5, | ||
) | ||
|
||
# Check out-of-bounds values | ||
value = pt.scalar("value") | ||
logp = pm.logp(GeneralizedPoisson.dist(mu, lam), value) | ||
logp_fn = pytensor.function([value, mu, lam], logp) | ||
|
||
logp_fn(-1, mu=5, lam=0) == -np.inf | ||
logp_fn(9, mu=5, lam=-1) == -np.inf | ||
|
||
# Check mu/lam restrictions | ||
with pytest.raises(ParameterValueError): | ||
logp_fn(1, mu=1, lam=2) | ||
|
||
with pytest.raises(ParameterValueError): | ||
logp_fn(1, mu=0, lam=0) | ||
|
||
with pytest.raises(ParameterValueError): | ||
logp_fn(1, mu=1, lam=-1) | ||
|
||
def test_logp_lam_expected_moments(self): | ||
mu = 30 | ||
lam = np.array([-0.9, -0.7, -0.2, 0, 0.2, 0.7, 0.9]) | ||
with pm.Model(): | ||
x = GeneralizedPoisson("x", mu=mu, lam=lam) | ||
trace = pm.sample(chains=1, draws=10_000, random_seed=96).posterior | ||
|
||
expected_mean = mu / (1 - lam) | ||
np.testing.assert_allclose(trace["x"].mean(("chain", "draw")), expected_mean, rtol=1e-1) | ||
|
||
expected_std = np.sqrt(mu / (1 - lam) ** 3) | ||
np.testing.assert_allclose(trace["x"].std(("chain", "draw")), expected_std, rtol=1e-1) | ||
|
||
@pytest.mark.parametrize( | ||
"mu, lam, size, expected", | ||
[ | ||
(50, [-0.6, 0, 0.6], None, np.floor(50 / (1 - np.array([-0.6, 0, 0.6])))), | ||
([5, 50], -0.1, (4, 2), np.full((4, 2), np.floor(np.array([5, 50]) / 1.1))), | ||
], | ||
) | ||
def test_moment(self, mu, lam, size, expected): | ||
with pm.Model() as model: | ||
GeneralizedPoisson("x", mu=mu, lam=lam, size=size) | ||
assert_moment_is_expected(model, expected) |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.