Closed
Description
Notebook title: Variational Inference: Bayesian Neural Networks
Notebook url: https://github.com/pymc-devs/pymc-examples/blob/main/examples/variational_inference/bayesian_neural_network_advi.ipynb
Issue description
Cell 14:
pm.set_data(new_data={"ann_input": grid_2d, "ann_output": dummy_out})
ppc = pm.sample_posterior_predictive(trace)
yields
ValueError: size does not match the broadcast shape of the parameters. (100,), (100,), (10000,)
Apply node that caused the error: bernoulli_rv{0, (0,), int64, True}(RandomGeneratorSharedVariable(<Generator(PCG64) at 0x7F779E3502E0>), MakeVector{dtype='int64'}.0, TensorConstant{4}, Elemwise{Sigmoid}[(0, 0)].0)
Toposort index: 10
Inputs types: [RandomGeneratorType, TensorType(int64, (1,)), TensorType(int64, ()), TensorType(float64, (?,))]
Inputs shapes: ['No shapes', (1,), (), (10000,)]
Inputs strides: ['No strides', (8,), (), (8,)]
Inputs values: [Generator(PCG64) at 0x7F779E3502E0, array([100]), array(4), 'not shown']
Outputs clients: [['output'], ['output']]
Expected output
100.00% [5000/5000 00:30<00:00]
Metadata
Metadata
Assignees
Labels
No labels