Skip to content

PX internals renaming #2135

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Jan 31, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
207 changes: 110 additions & 97 deletions packages/python/plotly/plotly/express/_core.py
Original file line number Diff line number Diff line change
Expand Up @@ -137,7 +137,7 @@ def make_mapping(args, variable):
)


def make_trace_kwargs(args, trace_spec, g, mapping_labels, sizeref):
def make_trace_kwargs(args, trace_spec, trace_data, mapping_labels, sizeref):
"""Populates a dict with arguments to update trace

Parameters
Expand All @@ -147,7 +147,7 @@ def make_trace_kwargs(args, trace_spec, g, mapping_labels, sizeref):
trace_spec : NamedTuple
which kind of trace to be used (has constructor, marginal etc.
attributes)
g : pandas DataFrame
trace_data : pandas DataFrame
data
mapping_labels : dict
to be used for hovertemplate
Expand All @@ -156,87 +156,92 @@ def make_trace_kwargs(args, trace_spec, g, mapping_labels, sizeref):

Returns
-------
result : dict
trace_patch : dict
dict to be used to update trace
fit_results : dict
fit information to be used for trendlines
"""
if "line_close" in args and args["line_close"]:
g = g.append(g.iloc[0])
result = trace_spec.trace_patch.copy() or {}
trace_data = trace_data.append(trace_data.iloc[0])
trace_patch = trace_spec.trace_patch.copy() or {}
fit_results = None
hover_header = ""
custom_data_len = 0
for k in trace_spec.attrs:
v = args[k]
v_label = get_decorated_label(args, v, k)
if k == "dimensions":
for attr_name in trace_spec.attrs:
attr_value = args[attr_name]
attr_label = get_decorated_label(args, attr_value, attr_name)
if attr_name == "dimensions":
dims = [
(name, column)
for (name, column) in g.iteritems()
if ((not v) or (name in v))
for (name, column) in trace_data.iteritems()
if ((not attr_value) or (name in attr_value))
and (
trace_spec.constructor != go.Parcoords
or args["data_frame"][name].dtype.kind in "bifc"
)
and (
trace_spec.constructor != go.Parcats
or (v is not None and name in v)
or (attr_value is not None and name in attr_value)
or len(args["data_frame"][name].unique())
<= args["dimensions_max_cardinality"]
)
]
result["dimensions"] = [
trace_patch["dimensions"] = [
dict(label=get_label(args, name), values=column.values)
for (name, column) in dims
]
if trace_spec.constructor == go.Splom:
for d in result["dimensions"]:
for d in trace_patch["dimensions"]:
d["axis"] = dict(matches=True)
mapping_labels["%{xaxis.title.text}"] = "%{x}"
mapping_labels["%{yaxis.title.text}"] = "%{y}"

elif (
v is not None
or (trace_spec.constructor == go.Histogram and k in ["x", "y"])
attr_value is not None
or (trace_spec.constructor == go.Histogram and attr_name in ["x", "y"])
or (
trace_spec.constructor in [go.Histogram2d, go.Histogram2dContour]
and k == "z"
and attr_name == "z"
)
):
if k == "size":
if "marker" not in result:
result["marker"] = dict()
result["marker"]["size"] = g[v]
result["marker"]["sizemode"] = "area"
result["marker"]["sizeref"] = sizeref
mapping_labels[v_label] = "%{marker.size}"
elif k == "marginal_x":
if attr_name == "size":
if "marker" not in trace_patch:
trace_patch["marker"] = dict()
trace_patch["marker"]["size"] = trace_data[attr_value]
trace_patch["marker"]["sizemode"] = "area"
trace_patch["marker"]["sizeref"] = sizeref
mapping_labels[attr_label] = "%{marker.size}"
elif attr_name == "marginal_x":
if trace_spec.constructor == go.Histogram:
mapping_labels["count"] = "%{y}"
elif k == "marginal_y":
elif attr_name == "marginal_y":
if trace_spec.constructor == go.Histogram:
mapping_labels["count"] = "%{x}"
elif k == "trendline":
if v in ["ols", "lowess"] and args["x"] and args["y"] and len(g) > 1:
elif attr_name == "trendline":
if (
attr_value in ["ols", "lowess"]
and args["x"]
and args["y"]
and len(trace_data) > 1
):
import statsmodels.api as sm

# sorting is bad but trace_specs with "trendline" have no other attrs
g2 = g.sort_values(by=args["x"])
y = g2[args["y"]]
x = g2[args["x"]]
result["x"] = x
sorted_trace_data = trace_data.sort_values(by=args["x"])
y = sorted_trace_data[args["y"]]
x = sorted_trace_data[args["x"]]
trace_patch["x"] = x

if x.dtype.type == np.datetime64:
x = x.astype(int) / 10 ** 9 # convert to unix epoch seconds

if v == "lowess":
if attr_value == "lowess":
trendline = sm.nonparametric.lowess(y, x)
result["y"] = trendline[:, 1]
trace_patch["y"] = trendline[:, 1]
hover_header = "<b>LOWESS trendline</b><br><br>"
elif v == "ols":
elif attr_value == "ols":
fit_results = sm.OLS(y.values, sm.add_constant(x.values)).fit()
result["y"] = fit_results.predict()
trace_patch["y"] = fit_results.predict()
hover_header = "<b>OLS trendline</b><br>"
hover_header += "%s = %g * %s + %g<br>" % (
args["y"],
Expand All @@ -250,120 +255,127 @@ def make_trace_kwargs(args, trace_spec, g, mapping_labels, sizeref):
mapping_labels[get_label(args, args["x"])] = "%{x}"
mapping_labels[get_label(args, args["y"])] = "%{y} <b>(trend)</b>"

elif k.startswith("error"):
error_xy = k[:7]
arr = "arrayminus" if k.endswith("minus") else "array"
if error_xy not in result:
result[error_xy] = {}
result[error_xy][arr] = g[v]
elif k == "custom_data":
result["customdata"] = g[v].values
custom_data_len = len(v) # number of custom data columns
elif k == "hover_name":
elif attr_name.startswith("error"):
error_xy = attr_name[:7]
arr = "arrayminus" if attr_name.endswith("minus") else "array"
if error_xy not in trace_patch:
trace_patch[error_xy] = {}
trace_patch[error_xy][arr] = trace_data[attr_value]
elif attr_name == "custom_data":
trace_patch["customdata"] = trace_data[attr_value].values
custom_data_len = len(attr_value) # number of custom data columns
elif attr_name == "hover_name":
if trace_spec.constructor not in [
go.Histogram,
go.Histogram2d,
go.Histogram2dContour,
]:
result["hovertext"] = g[v]
trace_patch["hovertext"] = trace_data[attr_value]
if hover_header == "":
hover_header = "<b>%{hovertext}</b><br><br>"
elif k == "hover_data":
elif attr_name == "hover_data":
if trace_spec.constructor not in [
go.Histogram,
go.Histogram2d,
go.Histogram2dContour,
]:
for col in v:
for col in attr_value:
try:
position = args["custom_data"].index(col)
except (ValueError, AttributeError, KeyError):
position = custom_data_len
custom_data_len += 1
if "customdata" in result:
result["customdata"] = np.hstack(
(result["customdata"], g[col].values[:, None])
if "customdata" in trace_patch:
trace_patch["customdata"] = np.hstack(
(
trace_patch["customdata"],
trace_data[col].values[:, None],
)
)
else:
result["customdata"] = g[col].values[:, None]
v_label_col = get_decorated_label(args, col, None)
mapping_labels[v_label_col] = "%%{customdata[%d]}" % (position)
elif k == "color":
trace_patch["customdata"] = trace_data[col].values[
:, None
]
attr_label_col = get_decorated_label(args, col, None)
mapping_labels[attr_label_col] = "%%{customdata[%d]}" % (
position
)
elif attr_name == "color":
if trace_spec.constructor in [go.Choropleth, go.Choroplethmapbox]:
result["z"] = g[v]
result["coloraxis"] = "coloraxis1"
mapping_labels[v_label] = "%{z}"
trace_patch["z"] = trace_data[attr_value]
trace_patch["coloraxis"] = "coloraxis1"
mapping_labels[attr_label] = "%{z}"
elif trace_spec.constructor in [
go.Sunburst,
go.Treemap,
go.Pie,
go.Funnelarea,
]:
if "marker" not in result:
result["marker"] = dict()
if "marker" not in trace_patch:
trace_patch["marker"] = dict()

if args.get("color_is_continuous"):
result["marker"]["colors"] = g[v]
result["marker"]["coloraxis"] = "coloraxis1"
mapping_labels[v_label] = "%{color}"
trace_patch["marker"]["colors"] = trace_data[attr_value]
trace_patch["marker"]["coloraxis"] = "coloraxis1"
mapping_labels[attr_label] = "%{color}"
else:
result["marker"]["colors"] = []
trace_patch["marker"]["colors"] = []
mapping = {}
for cat in g[v]:
for cat in trace_data[attr_value]:
if mapping.get(cat) is None:
mapping[cat] = args["color_discrete_sequence"][
len(mapping) % len(args["color_discrete_sequence"])
]
result["marker"]["colors"].append(mapping[cat])
trace_patch["marker"]["colors"].append(mapping[cat])
else:
colorable = "marker"
if trace_spec.constructor in [go.Parcats, go.Parcoords]:
colorable = "line"
if colorable not in result:
result[colorable] = dict()
result[colorable]["color"] = g[v]
result[colorable]["coloraxis"] = "coloraxis1"
mapping_labels[v_label] = "%%{%s.color}" % colorable
elif k == "animation_group":
result["ids"] = g[v]
elif k == "locations":
result[k] = g[v]
mapping_labels[v_label] = "%{location}"
elif k == "values":
result[k] = g[v]
_label = "value" if v_label == "values" else v_label
if colorable not in trace_patch:
trace_patch[colorable] = dict()
trace_patch[colorable]["color"] = trace_data[attr_value]
trace_patch[colorable]["coloraxis"] = "coloraxis1"
mapping_labels[attr_label] = "%%{%s.color}" % colorable
elif attr_name == "animation_group":
trace_patch["ids"] = trace_data[attr_value]
elif attr_name == "locations":
trace_patch[attr_name] = trace_data[attr_value]
mapping_labels[attr_label] = "%{location}"
elif attr_name == "values":
trace_patch[attr_name] = trace_data[attr_value]
_label = "value" if attr_label == "values" else attr_label
mapping_labels[_label] = "%{value}"
elif k == "parents":
result[k] = g[v]
_label = "parent" if v_label == "parents" else v_label
elif attr_name == "parents":
trace_patch[attr_name] = trace_data[attr_value]
_label = "parent" if attr_label == "parents" else attr_label
mapping_labels[_label] = "%{parent}"
elif k == "ids":
result[k] = g[v]
_label = "id" if v_label == "ids" else v_label
elif attr_name == "ids":
trace_patch[attr_name] = trace_data[attr_value]
_label = "id" if attr_label == "ids" else attr_label
mapping_labels[_label] = "%{id}"
elif k == "names":
elif attr_name == "names":
if trace_spec.constructor in [
go.Sunburst,
go.Treemap,
go.Pie,
go.Funnelarea,
]:
result["labels"] = g[v]
_label = "label" if v_label == "names" else v_label
trace_patch["labels"] = trace_data[attr_value]
_label = "label" if attr_label == "names" else attr_label
mapping_labels[_label] = "%{label}"
else:
result[k] = g[v]
trace_patch[attr_name] = trace_data[attr_value]
else:
if v:
result[k] = g[v]
mapping_labels[v_label] = "%%{%s}" % k
if attr_value:
trace_patch[attr_name] = trace_data[attr_value]
mapping_labels[attr_label] = "%%{%s}" % attr_name
if trace_spec.constructor not in [
go.Parcoords,
go.Parcats,
]:
hover_lines = [k + "=" + v for k, v in mapping_labels.items()]
result["hovertemplate"] = hover_header + "<br>".join(hover_lines)
return result, fit_results
trace_patch["hovertemplate"] = hover_header + "<br>".join(hover_lines)
return trace_patch, fit_results


def configure_axes(args, constructor, fig, orders):
Expand Down Expand Up @@ -1015,8 +1027,8 @@ def _check_dataframe_all_leaves(df):
null_indices = np.nonzero(null_mask.any(axis=1).values)[0]
for null_row_index in null_indices:
row = null_mask.iloc[null_row_index]
indices = np.nonzero(row.values)[0]
if not row[indices[0] :].all():
i = np.nonzero(row.values)[0][0]
if not row[i:].all():
raise ValueError(
"None entries cannot have not-None children",
df_sorted.iloc[null_row_index],
Expand Down Expand Up @@ -1058,6 +1070,7 @@ def process_dataframe_hierarchy(args):
path = [new_col_name if x == col_name else x for x in path]
df[new_col_name] = series_to_copy
# ------------ Define aggregation functions --------------------------------

def aggfunc_discrete(x):
uniques = x.unique()
if len(uniques) == 1:
Expand Down