Skip to content

CLN: Specialize assert_(np.array_equal(...)) #6368

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Feb 16, 2014
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/release.rst
Original file line number Diff line number Diff line change
Expand Up @@ -82,6 +82,7 @@ Improvements to existing features
- improve performance of slice indexing on Series with string keys (:issue:`6341`)
- implement joining a single-level indexed DataFrame on a matching column of a multi-indexed DataFrame (:issue:`3662`)
- Performance improvement in indexing into a multi-indexed Series (:issue:`5567`)
- Testing statements updated to use specialized asserts (:issue: `6175`)

.. _release.bug_fixes-0.14.0:

Expand Down
54 changes: 27 additions & 27 deletions pandas/tests/test_algos.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ def test_ints(self):

result = algos.match(to_match, values)
expected = np.array([0, 2, 1, 1, 0, 2, -1, 0])
self.assert_numpy_array_equals(result, expected)
self.assert_numpy_array_equal(result, expected)

result = Series(algos.match(to_match, values, np.nan))
expected = Series(np.array([0, 2, 1, 1, 0, 2, np.nan, 0]))
Expand All @@ -26,7 +26,7 @@ def test_ints(self):
s = pd.Series(np.arange(5),dtype=np.float32)
result = algos.match(s, [2,4])
expected = np.array([-1, -1, 0, -1, 1])
self.assert_numpy_array_equals(result, expected)
self.assert_numpy_array_equal(result, expected)

result = Series(algos.match(s, [2,4], np.nan))
expected = Series(np.array([np.nan, np.nan, 0, np.nan, 1]))
Expand All @@ -38,7 +38,7 @@ def test_strings(self):

result = algos.match(to_match, values)
expected = np.array([1, 0, -1, 0, 1, 2, -1])
self.assert_numpy_array_equals(result, expected)
self.assert_numpy_array_equal(result, expected)

result = Series(algos.match(to_match, values, np.nan))
expected = Series(np.array([1, 0, np.nan, 0, 1, 2, np.nan]))
Expand All @@ -51,42 +51,42 @@ def test_basic(self):

labels, uniques = algos.factorize(['a', 'b', 'b', 'a',
'a', 'c', 'c', 'c'])
# self.assert_numpy_array_equals(labels, np.array([ 0, 1, 1, 0, 0, 2, 2, 2],dtype=np.int64))
self.assert_numpy_array_equals(uniques, np.array(['a','b','c'], dtype=object))
# self.assert_numpy_array_equal(labels, np.array([ 0, 1, 1, 0, 0, 2, 2, 2],dtype=np.int64))
self.assert_numpy_array_equal(uniques, np.array(['a','b','c'], dtype=object))

labels, uniques = algos.factorize(['a', 'b', 'b', 'a',
'a', 'c', 'c', 'c'], sort=True)
self.assert_numpy_array_equals(labels, np.array([ 0, 1, 1, 0, 0, 2, 2, 2],dtype=np.int64))
self.assert_numpy_array_equals(uniques, np.array(['a','b','c'], dtype=object))
self.assert_numpy_array_equal(labels, np.array([ 0, 1, 1, 0, 0, 2, 2, 2],dtype=np.int64))
self.assert_numpy_array_equal(uniques, np.array(['a','b','c'], dtype=object))

labels, uniques = algos.factorize(list(reversed(range(5))))
self.assert_numpy_array_equals(labels, np.array([0, 1, 2, 3, 4], dtype=np.int64))
self.assert_numpy_array_equals(uniques, np.array([ 4, 3, 2, 1, 0],dtype=np.int64))
self.assert_numpy_array_equal(labels, np.array([0, 1, 2, 3, 4], dtype=np.int64))
self.assert_numpy_array_equal(uniques, np.array([ 4, 3, 2, 1, 0],dtype=np.int64))

labels, uniques = algos.factorize(list(reversed(range(5))), sort=True)
self.assert_numpy_array_equals(labels, np.array([ 4, 3, 2, 1, 0],dtype=np.int64))
self.assert_numpy_array_equals(uniques, np.array([0, 1, 2, 3, 4], dtype=np.int64))
self.assert_numpy_array_equal(labels, np.array([ 4, 3, 2, 1, 0],dtype=np.int64))
self.assert_numpy_array_equal(uniques, np.array([0, 1, 2, 3, 4], dtype=np.int64))

labels, uniques = algos.factorize(list(reversed(np.arange(5.))))
self.assert_numpy_array_equals(labels, np.array([0., 1., 2., 3., 4.], dtype=np.float64))
self.assert_numpy_array_equals(uniques, np.array([ 4, 3, 2, 1, 0],dtype=np.int64))
self.assert_numpy_array_equal(labels, np.array([0., 1., 2., 3., 4.], dtype=np.float64))
self.assert_numpy_array_equal(uniques, np.array([ 4, 3, 2, 1, 0],dtype=np.int64))

labels, uniques = algos.factorize(list(reversed(np.arange(5.))), sort=True)
self.assert_numpy_array_equals(labels, np.array([ 4, 3, 2, 1, 0],dtype=np.int64))
self.assert_numpy_array_equals(uniques, np.array([0., 1., 2., 3., 4.], dtype=np.float64))
self.assert_numpy_array_equal(labels, np.array([ 4, 3, 2, 1, 0],dtype=np.int64))
self.assert_numpy_array_equal(uniques, np.array([0., 1., 2., 3., 4.], dtype=np.float64))

def test_mixed(self):

# doc example reshaping.rst
x = Series(['A', 'A', np.nan, 'B', 3.14, np.inf])
labels, uniques = algos.factorize(x)

self.assert_numpy_array_equals(labels, np.array([ 0, 0, -1, 1, 2, 3],dtype=np.int64))
self.assert_numpy_array_equals(uniques, np.array(['A', 'B', 3.14, np.inf], dtype=object))
self.assert_numpy_array_equal(labels, np.array([ 0, 0, -1, 1, 2, 3],dtype=np.int64))
self.assert_numpy_array_equal(uniques, np.array(['A', 'B', 3.14, np.inf], dtype=object))

labels, uniques = algos.factorize(x, sort=True)
self.assert_numpy_array_equals(labels, np.array([ 2, 2, -1, 3, 0, 1],dtype=np.int64))
self.assert_numpy_array_equals(uniques, np.array([3.14, np.inf, 'A', 'B'], dtype=object))
self.assert_numpy_array_equal(labels, np.array([ 2, 2, -1, 3, 0, 1],dtype=np.int64))
self.assert_numpy_array_equal(uniques, np.array([3.14, np.inf, 'A', 'B'], dtype=object))

def test_datelike(self):

Expand All @@ -95,12 +95,12 @@ def test_datelike(self):
v2 = pd.Timestamp('20130101')
x = Series([v1,v1,v1,v2,v2,v1])
labels, uniques = algos.factorize(x)
self.assert_numpy_array_equals(labels, np.array([ 0,0,0,1,1,0],dtype=np.int64))
self.assert_numpy_array_equals(uniques, np.array([v1.value,v2.value],dtype='M8[ns]'))
self.assert_numpy_array_equal(labels, np.array([ 0,0,0,1,1,0],dtype=np.int64))
self.assert_numpy_array_equal(uniques, np.array([v1.value,v2.value],dtype='M8[ns]'))

labels, uniques = algos.factorize(x, sort=True)
self.assert_numpy_array_equals(labels, np.array([ 1,1,1,0,0,1],dtype=np.int64))
self.assert_numpy_array_equals(uniques, np.array([v2.value,v1.value],dtype='M8[ns]'))
self.assert_numpy_array_equal(labels, np.array([ 1,1,1,0,0,1],dtype=np.int64))
self.assert_numpy_array_equal(uniques, np.array([v2.value,v1.value],dtype='M8[ns]'))

# period
v1 = pd.Period('201302',freq='M')
Expand All @@ -109,12 +109,12 @@ def test_datelike(self):

# periods are not 'sorted' as they are converted back into an index
labels, uniques = algos.factorize(x)
self.assert_numpy_array_equals(labels, np.array([ 0,0,0,1,1,0],dtype=np.int64))
self.assert_numpy_array_equals(uniques, np.array([v1, v2],dtype=object))
self.assert_numpy_array_equal(labels, np.array([ 0,0,0,1,1,0],dtype=np.int64))
self.assert_numpy_array_equal(uniques, np.array([v1, v2],dtype=object))

labels, uniques = algos.factorize(x,sort=True)
self.assert_numpy_array_equals(labels, np.array([ 0,0,0,1,1,0],dtype=np.int64))
self.assert_numpy_array_equals(uniques, np.array([v1, v2],dtype=object))
self.assert_numpy_array_equal(labels, np.array([ 0,0,0,1,1,0],dtype=np.int64))
self.assert_numpy_array_equal(uniques, np.array([v1, v2],dtype=object))

class TestUnique(tm.TestCase):
_multiprocess_can_split_ = True
Expand Down
6 changes: 3 additions & 3 deletions pandas/tests/test_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -102,7 +102,7 @@ def test_shallow_copying(self):
assert_isinstance(self.container.view(), FrozenNDArray)
self.assert_(not isinstance(self.container.view(np.ndarray), FrozenNDArray))
self.assert_(self.container.view() is not self.container)
self.assert_(np.array_equal(self.container, original))
self.assert_numpy_array_equal(self.container, original)
# shallow copy should be the same too
assert_isinstance(self.container._shallow_copy(), FrozenNDArray)
# setting should not be allowed
Expand All @@ -114,10 +114,10 @@ def test_values(self):
original = self.container.view(np.ndarray).copy()
n = original[0] + 15
vals = self.container.values()
self.assert_(np.array_equal(original, vals))
self.assert_numpy_array_equal(original, vals)
self.assert_(original is not vals)
vals[0] = n
self.assert_(np.array_equal(self.container, original))
self.assert_numpy_array_equal(self.container, original)
self.assertEqual(vals[0], n)


Expand Down
6 changes: 3 additions & 3 deletions pandas/tests/test_categorical.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,11 +82,11 @@ def test_comparisons(self):
other = self.factor[np.random.permutation(n)]
result = self.factor == other
expected = np.asarray(self.factor) == np.asarray(other)
self.assert_(np.array_equal(result, expected))
self.assert_numpy_array_equal(result, expected)

result = self.factor == 'd'
expected = np.repeat(False, len(self.factor))
self.assert_(np.array_equal(result, expected))
self.assert_numpy_array_equal(result, expected)

def test_na_flags_int_levels(self):
# #1457
Expand All @@ -98,7 +98,7 @@ def test_na_flags_int_levels(self):
cat = Categorical(labels, levels)
repr(cat)

self.assert_(np.array_equal(com.isnull(cat), labels == -1))
self.assert_numpy_array_equal(com.isnull(cat), labels == -1)

def test_levels_none(self):
factor = Categorical(['a', 'b', 'b', 'a',
Expand Down
Loading