Skip to content

TST/CLN: Use fixtures instead of setup_method in tests/indexing #49157

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 9 commits into from
Oct 22, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
198 changes: 24 additions & 174 deletions pandas/tests/indexing/common.py
Original file line number Diff line number Diff line change
@@ -1,190 +1,40 @@
""" common utilities """
import itertools
from __future__ import annotations

import numpy as np

from pandas import (
DataFrame,
MultiIndex,
Series,
date_range,
)
import pandas._testing as tm
from pandas.core.api import (
Float64Index,
UInt64Index,
from typing import (
Any,
Literal,
)


def _mklbl(prefix, n):
def _mklbl(prefix: str, n: int):
return [f"{prefix}{i}" for i in range(n)]


def _axify(obj, key, axis):
# create a tuple accessor
axes = [slice(None)] * obj.ndim
axes[axis] = key
return tuple(axes)


class Base:
"""indexing comprehensive base class"""

_kinds = {"series", "frame"}
_typs = {
"ints",
"uints",
"labels",
"mixed",
"ts",
"floats",
"empty",
"ts_rev",
"multi",
}

def setup_method(self):

self.series_ints = Series(np.random.rand(4), index=np.arange(0, 8, 2))
self.frame_ints = DataFrame(
np.random.randn(4, 4), index=np.arange(0, 8, 2), columns=np.arange(0, 12, 3)
)

self.series_uints = Series(
np.random.rand(4), index=UInt64Index(np.arange(0, 8, 2))
)
self.frame_uints = DataFrame(
np.random.randn(4, 4),
index=UInt64Index(range(0, 8, 2)),
columns=UInt64Index(range(0, 12, 3)),
)

self.series_floats = Series(
np.random.rand(4), index=Float64Index(range(0, 8, 2))
)
self.frame_floats = DataFrame(
np.random.randn(4, 4),
index=Float64Index(range(0, 8, 2)),
columns=Float64Index(range(0, 12, 3)),
)

m_idces = [
MultiIndex.from_product([[1, 2], [3, 4]]),
MultiIndex.from_product([[5, 6], [7, 8]]),
MultiIndex.from_product([[9, 10], [11, 12]]),
]

self.series_multi = Series(np.random.rand(4), index=m_idces[0])
self.frame_multi = DataFrame(
np.random.randn(4, 4), index=m_idces[0], columns=m_idces[1]
)

self.series_labels = Series(np.random.randn(4), index=list("abcd"))
self.frame_labels = DataFrame(
np.random.randn(4, 4), index=list("abcd"), columns=list("ABCD")
)

self.series_mixed = Series(np.random.randn(4), index=[2, 4, "null", 8])
self.frame_mixed = DataFrame(np.random.randn(4, 4), index=[2, 4, "null", 8])

self.series_ts = Series(
np.random.randn(4), index=date_range("20130101", periods=4)
)
self.frame_ts = DataFrame(
np.random.randn(4, 4), index=date_range("20130101", periods=4)
)

dates_rev = date_range("20130101", periods=4).sort_values(ascending=False)
self.series_ts_rev = Series(np.random.randn(4), index=dates_rev)
self.frame_ts_rev = DataFrame(np.random.randn(4, 4), index=dates_rev)

self.frame_empty = DataFrame()
self.series_empty = Series(dtype=object)

# form agglomerates
for kind in self._kinds:
d = {}
for typ in self._typs:
d[typ] = getattr(self, f"{kind}_{typ}")

setattr(self, kind, d)

def generate_indices(self, f, values=False):
"""
generate the indices
if values is True , use the axis values
is False, use the range
"""
axes = f.axes
if values:
axes = (list(range(len(ax))) for ax in axes)

return itertools.product(*axes)

def get_value(self, name, f, i, values=False):
"""return the value for the location i"""
# check against values
if values:
return f.values[i]

elif name == "iat":
return f.iloc[i]
else:
assert name == "at"
return f.loc[i]

def check_values(self, f, func, values=False):

if f is None:
return
axes = f.axes
indices = itertools.product(*axes)

for i in indices:
result = getattr(f, func)[i]

# check against values
if values:
expected = f.values[i]
else:
expected = f
for a in reversed(i):
expected = expected.__getitem__(a)

tm.assert_almost_equal(result, expected)

def check_result(self, method, key, typs=None, axes=None, fails=None):
def _eq(axis, obj, key):
"""compare equal for these 2 keys"""
axified = _axify(obj, key, axis)
def check_indexing_smoketest_or_raises(
obj,
method: Literal["iloc", "loc"],
key: Any,
axes: Literal[0, 1] | None = None,
fails=None,
) -> None:
if axes is None:
axes_list = [0, 1]
else:
assert axes in [0, 1]
axes_list = [axes]

for ax in axes_list:
if ax < obj.ndim:
# create a tuple accessor
new_axes = [slice(None)] * obj.ndim
new_axes[ax] = key
axified = tuple(new_axes)
try:
getattr(obj, method).__getitem__(axified)

except (IndexError, TypeError, KeyError) as detail:

# if we are in fails, the ok, otherwise raise it
if fails is not None:
if isinstance(detail, fails):
return
raise

if typs is None:
typs = self._typs

if axes is None:
axes = [0, 1]
else:
assert axes in [0, 1]
axes = [axes]

# check
for kind in self._kinds:

d = getattr(self, kind)
for ax in axes:
for typ in typs:
assert typ in self._typs

obj = d[typ]
if ax < obj.ndim:
_eq(axis=ax, obj=obj, key=key)
107 changes: 107 additions & 0 deletions pandas/tests/indexing/conftest.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
import numpy as np
import pytest

from pandas import (
DataFrame,
MultiIndex,
Series,
date_range,
)
from pandas.core.api import (
Float64Index,
UInt64Index,
)


@pytest.fixture
def series_ints():
return Series(np.random.rand(4), index=np.arange(0, 8, 2))


@pytest.fixture
def frame_ints():
return DataFrame(
np.random.randn(4, 4), index=np.arange(0, 8, 2), columns=np.arange(0, 12, 3)
)


@pytest.fixture
def series_uints():
return Series(np.random.rand(4), index=UInt64Index(np.arange(0, 8, 2)))


@pytest.fixture
def frame_uints():
return DataFrame(
np.random.randn(4, 4),
index=UInt64Index(range(0, 8, 2)),
columns=UInt64Index(range(0, 12, 3)),
)


@pytest.fixture
def series_labels():
return Series(np.random.randn(4), index=list("abcd"))


@pytest.fixture
def frame_labels():
return DataFrame(np.random.randn(4, 4), index=list("abcd"), columns=list("ABCD"))


@pytest.fixture
def series_ts():
return Series(np.random.randn(4), index=date_range("20130101", periods=4))


@pytest.fixture
def frame_ts():
return DataFrame(np.random.randn(4, 4), index=date_range("20130101", periods=4))


@pytest.fixture
def series_floats():
return Series(np.random.rand(4), index=Float64Index(range(0, 8, 2)))


@pytest.fixture
def frame_floats():
return DataFrame(
np.random.randn(4, 4),
index=Float64Index(range(0, 8, 2)),
columns=Float64Index(range(0, 12, 3)),
)


@pytest.fixture
def series_mixed():
return Series(np.random.randn(4), index=[2, 4, "null", 8])


@pytest.fixture
def frame_mixed():
return DataFrame(np.random.randn(4, 4), index=[2, 4, "null", 8])


@pytest.fixture
def frame_empty():
return DataFrame()


@pytest.fixture
def series_empty():
return Series(dtype=object)


@pytest.fixture
def frame_multi():
return DataFrame(
np.random.randn(4, 4),
index=MultiIndex.from_product([[1, 2], [3, 4]]),
columns=MultiIndex.from_product([[5, 6], [7, 8]]),
)


@pytest.fixture
def series_multi():
return Series(np.random.rand(4), index=MultiIndex.from_product([[1, 2], [3, 4]]))
16 changes: 11 additions & 5 deletions pandas/tests/indexing/test_iloc.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@
)
import pandas._testing as tm
from pandas.api.types import is_scalar
from pandas.tests.indexing.common import Base
from pandas.tests.indexing.common import check_indexing_smoketest_or_raises

# We pass through the error message from numpy
_slice_iloc_msg = re.escape(
Expand All @@ -41,13 +41,19 @@
)


class TestiLoc(Base):
class TestiLoc:
@pytest.mark.parametrize("key", [2, -1, [0, 1, 2]])
def test_iloc_getitem_int_and_list_int(self, key):
self.check_result(
@pytest.mark.parametrize("kind", ["series", "frame"])
@pytest.mark.parametrize(
"col",
["labels", "mixed", "ts", "floats", "empty"],
)
def test_iloc_getitem_int_and_list_int(self, key, kind, col, request):
obj = request.getfixturevalue(f"{kind}_{col}")
check_indexing_smoketest_or_raises(
obj,
"iloc",
key,
typs=["labels", "mixed", "ts", "floats", "empty"],
fails=IndexError,
)

Expand Down
Loading