Skip to content

BUG: Dataframe mask method does not work properly with pd.StringDtype() #40941

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Apr 16, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion doc/source/whatsnew/v1.3.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -830,7 +830,7 @@ ExtensionArray
- Bug in :meth:`DataFrame.where` when ``other`` is a :class:`Series` with :class:`ExtensionArray` dtype (:issue:`38729`)
- Fixed bug where :meth:`Series.idxmax`, :meth:`Series.idxmin` and ``argmax/min`` fail when the underlying data is :class:`ExtensionArray` (:issue:`32749`, :issue:`33719`, :issue:`36566`)
- Fixed a bug where some properties of subclasses of :class:`PandasExtensionDtype` where improperly cached (:issue:`40329`)
-
- Bug in :meth:`DataFrame.mask` where masking a :class:`Dataframe` with an :class:`ExtensionArray` dtype raises ``ValueError`` (:issue:`40941`)

Styler
^^^^^^
Expand Down
2 changes: 1 addition & 1 deletion pandas/core/generic.py
Original file line number Diff line number Diff line change
Expand Up @@ -8958,7 +8958,7 @@ def _where(
join="left",
axis=axis,
level=level,
fill_value=np.nan,
fill_value=None,
copy=False,
)

Expand Down
24 changes: 24 additions & 0 deletions pandas/tests/frame/indexing/test_mask.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,10 @@
import numpy as np

from pandas import (
NA,
DataFrame,
Series,
StringDtype,
isna,
)
import pandas._testing as tm
Expand Down Expand Up @@ -99,3 +102,24 @@ def test_mask_try_cast_deprecated(frame_or_series):
with tm.assert_produces_warning(FutureWarning):
# try_cast keyword deprecated
obj.mask(mask, -1, try_cast=True)


def test_mask_stringdtype():
# GH 40824
df = DataFrame(
{"A": ["foo", "bar", "baz", NA]},
index=["id1", "id2", "id3", "id4"],
dtype=StringDtype(),
)
filtered_df = DataFrame(
{"A": ["this", "that"]}, index=["id2", "id3"], dtype=StringDtype()
)
filter_ser = Series([False, True, True, False])
result = df.mask(filter_ser, filtered_df)

expected = DataFrame(
{"A": [NA, "this", "that", NA]},
index=["id1", "id2", "id3", "id4"],
dtype=StringDtype(),
)
tm.assert_frame_equal(result, expected)
20 changes: 20 additions & 0 deletions pandas/tests/frame/indexing/test_where.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
DataFrame,
DatetimeIndex,
Series,
StringDtype,
Timestamp,
date_range,
isna,
Expand Down Expand Up @@ -709,3 +710,22 @@ def test_where_copies_with_noop(frame_or_series):
where_res *= 2

tm.assert_equal(result, expected)


def test_where_string_dtype(frame_or_series):
# GH40824
obj = frame_or_series(
["a", "b", "c", "d"], index=["id1", "id2", "id3", "id4"], dtype=StringDtype()
)
filtered_obj = frame_or_series(
["b", "c"], index=["id2", "id3"], dtype=StringDtype()
)
filter_ser = Series([False, True, True, False])

result = obj.where(filter_ser, filtered_obj)
expected = frame_or_series(
[pd.NA, "b", "c", pd.NA],
index=["id1", "id2", "id3", "id4"],
dtype=StringDtype(),
)
tm.assert_equal(result, expected)
25 changes: 24 additions & 1 deletion pandas/tests/series/indexing/test_mask.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,11 @@
import numpy as np
import pytest

from pandas import Series
from pandas import (
NA,
Series,
StringDtype,
)
import pandas._testing as tm


Expand Down Expand Up @@ -63,3 +67,22 @@ def test_mask_inplace():
rs = s.copy()
rs.mask(cond, -s, inplace=True)
tm.assert_series_equal(rs, s.mask(cond, -s))


def test_mask_stringdtype():
# GH 40824
ser = Series(
["foo", "bar", "baz", NA],
index=["id1", "id2", "id3", "id4"],
dtype=StringDtype(),
)
filtered_ser = Series(["this", "that"], index=["id2", "id3"], dtype=StringDtype())
filter_ser = Series([False, True, True, False])
result = ser.mask(filter_ser, filtered_ser)

expected = Series(
[NA, "this", "that", NA],
index=["id1", "id2", "id3", "id4"],
dtype=StringDtype(),
)
tm.assert_series_equal(result, expected)