Skip to content

Change default of float_precision for read_csv and read_table to "high" #36228

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Sep 13, 2020
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 13 additions & 0 deletions doc/source/whatsnew/v1.2.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -96,6 +96,19 @@ For example:
buffer = io.BytesIO()
data.to_csv(buffer, mode="w+b", encoding="utf-8", compression="gzip")

:.. _whatsnew_read_csv_table_precision_default:

Change in default floating precision for ``read_csv`` and ``read_table``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

For the C parsing engine, the methods :meth:`read_csv` and :meth:`read_table` previously defaulted to a parser that
could read floating point numbers slightly incorrectly with respect to the last bit in precision.
The option ``floating_precision="high"`` has always been available to avoid this issue.
Beginning with this version, the default is now to use the more accurate parser by making
``floating_precision=None`` correspond to the high precision parser, and the new option
``floating_precision="legacy"`` to use the legacy parser. The change to using the higher precision
parser by default should have no impact on performance. (:issue:`17154`)

.. _whatsnew_120.enhancements.other:

Other enhancements
Expand Down
6 changes: 3 additions & 3 deletions pandas/_libs/parsers.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -476,10 +476,10 @@ cdef class TextReader:
if float_precision == "round_trip":
# see gh-15140
self.parser.double_converter = round_trip
elif float_precision == "high":
self.parser.double_converter = precise_xstrtod
else:
elif float_precision == "legacy":
self.parser.double_converter = xstrtod
else: # float_precision == "high" or float_precision is None:
self.parser.double_converter = precise_xstrtod

if isinstance(dtype, dict):
dtype = {k: pandas_dtype(dtype[k])
Expand Down
6 changes: 3 additions & 3 deletions pandas/io/parsers.py
Original file line number Diff line number Diff line change
Expand Up @@ -338,9 +338,9 @@
option can improve performance because there is no longer any I/O overhead.
float_precision : str, optional
Specifies which converter the C engine should use for floating-point
values. The options are `None` for the ordinary converter,
`high` for the high-precision converter, and `round_trip` for the
round-trip converter.
values. The options are `None` or `high` for the ordinary converter,
`legacy` for the original lower precision pandas converter, and
`round_trip` for the round-trip converter.

Returns
-------
Expand Down
22 changes: 19 additions & 3 deletions pandas/tests/io/parser/test_c_parser_only.py
Original file line number Diff line number Diff line change
Expand Up @@ -160,7 +160,9 @@ def test_precise_conversion(c_parser_only):
# 25 decimal digits of precision
text = f"a\n{num:.25}"

normal_val = float(parser.read_csv(StringIO(text))["a"][0])
normal_val = float(
parser.read_csv(StringIO(text), float_precision="legacy")["a"][0]
)
precise_val = float(
parser.read_csv(StringIO(text), float_precision="high")["a"][0]
)
Expand Down Expand Up @@ -608,7 +610,7 @@ def test_unix_style_breaks(c_parser_only):
tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize("float_precision", [None, "high", "round_trip"])
@pytest.mark.parametrize("float_precision", [None, "legacy", "high", "round_trip"])
@pytest.mark.parametrize(
"data,thousands,decimal",
[
Expand Down Expand Up @@ -646,7 +648,7 @@ def test_1000_sep_with_decimal(
tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize("float_precision", [None, "high", "round_trip"])
@pytest.mark.parametrize("float_precision", [None, "legacy", "high", "round_trip"])
@pytest.mark.parametrize(
"value,expected",
[
Expand Down Expand Up @@ -702,3 +704,17 @@ def test_1000_sep_decimal_float_precision(
)
val = df.iloc[0, 0]
assert val == expected


def test_high_is_default(c_parser_only):
# GH 17154, 36228
parser = c_parser_only
s = "foo\n243.164\n"
df = parser.read_csv(StringIO(s))
df2 = parser.read_csv(StringIO(s), float_precision="high")

tm.assert_frame_equal(df, df2)

df3 = parser.read_csv(StringIO(s), float_precision="legacy")

assert not df.iloc[0, 0] == df3.iloc[0, 0]