Skip to content

Backport PR #31794 on branch 1.0.x (BUG: Avoid casting Int to object in Categorical.from_codes) #31921

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions doc/source/whatsnew/v1.0.2.rst
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,10 @@ Fixed regressions
Bug fixes
~~~~~~~~~

**Categorical**

- Fixed bug where :meth:`Categorical.from_codes` improperly raised a ``ValueError`` when passed nullable integer codes. (:issue:`31779`)

**I/O**

- Using ``pd.NA`` with :meth:`DataFrame.to_json` now correctly outputs a null value instead of an empty object (:issue:`31615`)
Expand Down
8 changes: 7 additions & 1 deletion pandas/core/arrays/categorical.py
Original file line number Diff line number Diff line change
Expand Up @@ -644,7 +644,13 @@ def from_codes(cls, codes, categories=None, ordered=None, dtype=None):
)
raise ValueError(msg)

codes = np.asarray(codes) # #21767
if is_extension_array_dtype(codes) and is_integer_dtype(codes):
# Avoid the implicit conversion of Int to object
if isna(codes).any():
raise ValueError("codes cannot contain NA values")
codes = codes.to_numpy(dtype=np.int64)
else:
codes = np.asarray(codes)
if len(codes) and not is_integer_dtype(codes):
raise ValueError("codes need to be array-like integers")

Expand Down
17 changes: 17 additions & 0 deletions pandas/tests/arrays/categorical/test_constructors.py
Original file line number Diff line number Diff line change
Expand Up @@ -560,6 +560,23 @@ def test_from_codes_neither(self):
with pytest.raises(ValueError, match=msg):
Categorical.from_codes([0, 1])

def test_from_codes_with_nullable_int(self):
codes = pd.array([0, 1], dtype="Int64")
categories = ["a", "b"]

result = Categorical.from_codes(codes, categories=categories)
expected = Categorical.from_codes(codes.to_numpy(int), categories=categories)

tm.assert_categorical_equal(result, expected)

def test_from_codes_with_nullable_int_na_raises(self):
codes = pd.array([0, None], dtype="Int64")
categories = ["a", "b"]

msg = "codes cannot contain NA values"
with pytest.raises(ValueError, match=msg):
Categorical.from_codes(codes, categories=categories)

@pytest.mark.parametrize("dtype", [None, "category"])
def test_from_inferred_categories(self, dtype):
cats = ["a", "b"]
Expand Down