Skip to content

BUG: Perform i8 conversion for datetimelike IntervalTree queries #22988

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Oct 7, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion doc/source/whatsnew/v0.24.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -755,7 +755,7 @@ Interval
- Bug in the :class:`IntervalIndex` constructor where the ``closed`` parameter did not always override the inferred ``closed`` (:issue:`19370`)
- Bug in the ``IntervalIndex`` repr where a trailing comma was missing after the list of intervals (:issue:`20611`)
- Bug in :class:`Interval` where scalar arithmetic operations did not retain the ``closed`` value (:issue:`22313`)
-
- Bug in :class:`IntervalIndex` where indexing with datetime-like values raised a ``KeyError`` (:issue:`20636`)

Indexing
^^^^^^^^
Expand Down
91 changes: 85 additions & 6 deletions pandas/core/indexes/interval.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,12 +6,14 @@

from pandas.compat import add_metaclass
from pandas.core.dtypes.missing import isna
from pandas.core.dtypes.cast import find_common_type, maybe_downcast_to_dtype
from pandas.core.dtypes.cast import (
find_common_type, maybe_downcast_to_dtype, infer_dtype_from_scalar)
from pandas.core.dtypes.common import (
ensure_platform_int,
is_list_like,
is_datetime_or_timedelta_dtype,
is_datetime64tz_dtype,
is_dtype_equal,
is_integer_dtype,
is_float_dtype,
is_interval_dtype,
Expand All @@ -29,8 +31,8 @@
Interval, IntervalMixin, IntervalTree,
)

from pandas.core.indexes.datetimes import date_range
from pandas.core.indexes.timedeltas import timedelta_range
from pandas.core.indexes.datetimes import date_range, DatetimeIndex
from pandas.core.indexes.timedeltas import timedelta_range, TimedeltaIndex
from pandas.core.indexes.multi import MultiIndex
import pandas.core.common as com
from pandas.util._decorators import cache_readonly, Appender
Expand Down Expand Up @@ -192,7 +194,9 @@ def _isnan(self):

@cache_readonly
def _engine(self):
return IntervalTree(self.left, self.right, closed=self.closed)
left = self._maybe_convert_i8(self.left)
right = self._maybe_convert_i8(self.right)
return IntervalTree(left, right, closed=self.closed)

def __contains__(self, key):
"""
Expand Down Expand Up @@ -514,6 +518,78 @@ def _maybe_cast_indexed(self, key):

return key

def _needs_i8_conversion(self, key):
"""
Check if a given key needs i8 conversion. Conversion is necessary for
Timestamp, Timedelta, DatetimeIndex, and TimedeltaIndex keys. An
Interval-like requires conversion if it's endpoints are one of the
aforementioned types.

Assumes that any list-like data has already been cast to an Index.

Parameters
----------
key : scalar or Index-like
The key that should be checked for i8 conversion

Returns
-------
boolean
"""
if is_interval_dtype(key) or isinstance(key, Interval):
return self._needs_i8_conversion(key.left)

i8_types = (Timestamp, Timedelta, DatetimeIndex, TimedeltaIndex)
return isinstance(key, i8_types)

def _maybe_convert_i8(self, key):
"""
Maybe convert a given key to it's equivalent i8 value(s). Used as a
preprocessing step prior to IntervalTree queries (self._engine), which
expects numeric data.

Parameters
----------
key : scalar or list-like
The key that should maybe be converted to i8.

Returns
-------
key: scalar or list-like
The original key if no conversion occured, int if converted scalar,
Int64Index if converted list-like.
"""
original = key
if is_list_like(key):
key = ensure_index(key)

if not self._needs_i8_conversion(key):
return original

scalar = is_scalar(key)
if is_interval_dtype(key) or isinstance(key, Interval):
# convert left/right and reconstruct
left = self._maybe_convert_i8(key.left)
right = self._maybe_convert_i8(key.right)
constructor = Interval if scalar else IntervalIndex.from_arrays
return constructor(left, right, closed=self.closed)

if scalar:
# Timestamp/Timedelta
key_dtype, key_i8 = infer_dtype_from_scalar(key, pandas_dtype=True)
else:
# DatetimeIndex/TimedeltaIndex
key_dtype, key_i8 = key.dtype, Index(key.asi8)

# ensure consistency with IntervalIndex subtype
subtype = self.dtype.subtype
msg = ('Cannot index an IntervalIndex of subtype {subtype} with '
'values of dtype {other}')
if not is_dtype_equal(subtype, key_dtype):
raise ValueError(msg.format(subtype=subtype, other=key_dtype))

return key_i8

def _check_method(self, method):
if method is None:
return
Expand Down Expand Up @@ -648,6 +724,7 @@ def get_loc(self, key, method=None):

else:
# use the interval tree
key = self._maybe_convert_i8(key)
if isinstance(key, Interval):
left, right = _get_interval_closed_bounds(key)
return self._engine.get_loc_interval(left, right)
Expand Down Expand Up @@ -711,8 +788,10 @@ def _get_reindexer(self, target):
"""

# find the left and right indexers
lindexer = self._engine.get_indexer(target.left.values)
rindexer = self._engine.get_indexer(target.right.values)
left = self._maybe_convert_i8(target.left)
right = self._maybe_convert_i8(target.right)
lindexer = self._engine.get_indexer(left.values)
rindexer = self._engine.get_indexer(right.values)

# we want to return an indexer on the intervals
# however, our keys could provide overlapping of multiple
Expand Down
135 changes: 135 additions & 0 deletions pandas/tests/indexes/interval/test_interval.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,9 @@
from __future__ import division

from itertools import permutations
import pytest
import numpy as np
import re
from pandas import (
Interval, IntervalIndex, Index, isna, notna, interval_range, Timestamp,
Timedelta, date_range, timedelta_range)
Expand Down Expand Up @@ -498,6 +500,48 @@ def test_get_loc_length_one(self, item, closed):
result = index.get_loc(item)
assert result == 0

# Make consistent with test_interval_new.py (see #16316, #16386)
@pytest.mark.parametrize('breaks', [
date_range('20180101', periods=4),
date_range('20180101', periods=4, tz='US/Eastern'),
timedelta_range('0 days', periods=4)], ids=lambda x: str(x.dtype))
def test_get_loc_datetimelike_nonoverlapping(self, breaks):
# GH 20636
# nonoverlapping = IntervalIndex method and no i8 conversion
index = IntervalIndex.from_breaks(breaks)

value = index[0].mid
result = index.get_loc(value)
expected = 0
assert result == expected

interval = Interval(index[0].left, index[1].right)
result = index.get_loc(interval)
expected = slice(0, 2)
assert result == expected

# Make consistent with test_interval_new.py (see #16316, #16386)
@pytest.mark.parametrize('arrays', [
(date_range('20180101', periods=4), date_range('20180103', periods=4)),
(date_range('20180101', periods=4, tz='US/Eastern'),
date_range('20180103', periods=4, tz='US/Eastern')),
(timedelta_range('0 days', periods=4),
timedelta_range('2 days', periods=4))], ids=lambda x: str(x[0].dtype))
def test_get_loc_datetimelike_overlapping(self, arrays):
# GH 20636
# overlapping = IntervalTree method with i8 conversion
index = IntervalIndex.from_arrays(*arrays)

value = index[0].mid + Timedelta('12 hours')
result = np.sort(index.get_loc(value))
expected = np.array([0, 1], dtype='int64')
assert tm.assert_numpy_array_equal(result, expected)

interval = Interval(index[0].left, index[1].right)
result = np.sort(index.get_loc(interval))
expected = np.array([0, 1, 2], dtype='int64')
assert tm.assert_numpy_array_equal(result, expected)

# To be removed, replaced by test_interval_new.py (see #16316, #16386)
def test_get_indexer(self):
actual = self.index.get_indexer([-1, 0, 0.5, 1, 1.5, 2, 3])
Expand Down Expand Up @@ -555,6 +599,97 @@ def test_get_indexer_length_one(self, item, closed):
expected = np.array([0] * len(item), dtype='intp')
tm.assert_numpy_array_equal(result, expected)

# Make consistent with test_interval_new.py (see #16316, #16386)
@pytest.mark.parametrize('arrays', [
(date_range('20180101', periods=4), date_range('20180103', periods=4)),
(date_range('20180101', periods=4, tz='US/Eastern'),
date_range('20180103', periods=4, tz='US/Eastern')),
(timedelta_range('0 days', periods=4),
timedelta_range('2 days', periods=4))], ids=lambda x: str(x[0].dtype))
def test_get_reindexer_datetimelike(self, arrays):
# GH 20636
index = IntervalIndex.from_arrays(*arrays)
tuples = [(index[0].left, index[0].left + pd.Timedelta('12H')),
(index[-1].right - pd.Timedelta('12H'), index[-1].right)]
target = IntervalIndex.from_tuples(tuples)

result = index._get_reindexer(target)
expected = np.array([0, 3], dtype='int64')
tm.assert_numpy_array_equal(result, expected)

@pytest.mark.parametrize('breaks', [
date_range('20180101', periods=4),
date_range('20180101', periods=4, tz='US/Eastern'),
timedelta_range('0 days', periods=4)], ids=lambda x: str(x.dtype))
def test_maybe_convert_i8(self, breaks):
# GH 20636
index = IntervalIndex.from_breaks(breaks)

# intervalindex
result = index._maybe_convert_i8(index)
expected = IntervalIndex.from_breaks(breaks.asi8)
tm.assert_index_equal(result, expected)

# interval
interval = Interval(breaks[0], breaks[1])
result = index._maybe_convert_i8(interval)
expected = Interval(breaks[0].value, breaks[1].value)
assert result == expected

# datetimelike index
result = index._maybe_convert_i8(breaks)
expected = Index(breaks.asi8)
tm.assert_index_equal(result, expected)

# datetimelike scalar
result = index._maybe_convert_i8(breaks[0])
expected = breaks[0].value
assert result == expected

# list-like of datetimelike scalars
result = index._maybe_convert_i8(list(breaks))
expected = Index(breaks.asi8)
tm.assert_index_equal(result, expected)

@pytest.mark.parametrize('breaks', [
np.arange(5, dtype='int64'),
np.arange(5, dtype='float64')], ids=lambda x: str(x.dtype))
@pytest.mark.parametrize('make_key', [
IntervalIndex.from_breaks,
lambda breaks: Interval(breaks[0], breaks[1]),
lambda breaks: breaks,
lambda breaks: breaks[0],
list], ids=['IntervalIndex', 'Interval', 'Index', 'scalar', 'list'])
def test_maybe_convert_i8_numeric(self, breaks, make_key):
# GH 20636
index = IntervalIndex.from_breaks(breaks)
key = make_key(breaks)

# no conversion occurs for numeric
result = index._maybe_convert_i8(key)
assert result is key

@pytest.mark.parametrize('breaks1, breaks2', permutations([
date_range('20180101', periods=4),
date_range('20180101', periods=4, tz='US/Eastern'),
timedelta_range('0 days', periods=4)], 2), ids=lambda x: str(x.dtype))
@pytest.mark.parametrize('make_key', [
IntervalIndex.from_breaks,
lambda breaks: Interval(breaks[0], breaks[1]),
lambda breaks: breaks,
lambda breaks: breaks[0],
list], ids=['IntervalIndex', 'Interval', 'Index', 'scalar', 'list'])
def test_maybe_convert_i8_errors(self, breaks1, breaks2, make_key):
# GH 20636
index = IntervalIndex.from_breaks(breaks1)
key = make_key(breaks2)

msg = ('Cannot index an IntervalIndex of subtype {dtype1} with '
'values of dtype {dtype2}')
msg = re.escape(msg.format(dtype1=breaks1.dtype, dtype2=breaks2.dtype))
with tm.assert_raises_regex(ValueError, msg):
index._maybe_convert_i8(key)

# To be removed, replaced by test_interval_new.py (see #16316, #16386)
def test_contains(self):
# Only endpoints are valid.
Expand Down