Skip to content

DOC: update Series.sort_values docstring #20247

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 16 commits into from
Mar 12, 2018
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
106 changes: 104 additions & 2 deletions pandas/core/series.py
Original file line number Diff line number Diff line change
Expand Up @@ -76,7 +76,7 @@
__all__ = ['Series']

_shared_doc_kwargs = dict(
axes='index', klass='Series', axes_single_arg="{0, 'index'}",
axes='index', klass='Series', axes_single_arg="{0 or 'index'}",
inplace="""inplace : boolean, default False
If True, performs operation inplace and returns None.""",
unique='np.ndarray', duplicated='Series',
Expand Down Expand Up @@ -1885,10 +1885,112 @@ def update(self, other):
# ----------------------------------------------------------------------
# Reindexing, sorting

@Appender(generic._shared_docs['sort_values'] % _shared_doc_kwargs)
def sort_values(self, axis=0, ascending=True, inplace=False,
kind='quicksort', na_position='last'):
"""
Sort by the values.

Sort a Series in ascending or descending order by some
criterion.

Parameters
----------
axis : {0 or 'index'}, default 0
Axis to direct sorting. The value 'index' is accepted for
compatibility with DataFrame.sort_values.
ascending : bool, default True
If True, sort values in ascending order, otherwise descending.
inplace : bool, default False
If True, perform operation in-place.
kind : {'quicksort', 'mergesort' or 'heapsort'}, default 'quicksort'
Choice of sorting algorithm. See also :func:`numpy.sort` for more
information. 'mergesort' is the only stable algorithm.
na_position : {'first' or 'last'}, default 'last'
Argument 'first' puts NaNs at the beginning, 'last' puts NaNs at
the end.

Returns
-------
Series
Series ordered by values.

See Also
--------
Series.sort_index : Sort by the Series indices.
DataFrame.sort_values : Sort DataFrame by the values along either axis.
DataFrame.sort_index : Sort DataFrame by indices.

Examples
--------
>>> s = pd.Series([np.nan, 1, 3, 10, 5])
>>> s
0 NaN
1 1.0
2 3.0
3 10.0
4 5.0
dtype: float64

Sort values ascending order (default behaviour)

>>> s.sort_values(ascending=True)
1 1.0
2 3.0
4 5.0
3 10.0
0 NaN
dtype: float64

Sort values descending order

>>> s.sort_values(ascending=False)
3 10.0
4 5.0
2 3.0
1 1.0
0 NaN
dtype: float64

Sort values inplace

>>> s.sort_values(ascending=False, inplace=True)
>>> s
3 10.0
4 5.0
2 3.0
1 1.0
0 NaN
dtype: float64

Sort values putting NAs first

>>> s.sort_values(na_position='first')
0 NaN
1 1.0
2 3.0
4 5.0
3 10.0
dtype: float64

Sort a series of strings

>>> s = pd.Series(['z', 'b', 'd', 'a', 'c'])
>>> s
0 z
1 b
2 d
3 a
4 c
dtype: object

>>> s.sort_values()
3 a
1 b
4 c
2 d
0 z
dtype: object
"""
inplace = validate_bool_kwarg(inplace, 'inplace')
axis = self._get_axis_number(axis)

Expand Down