Skip to content

DOC: update the Series.sort_values docstring #20215

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
104 changes: 102 additions & 2 deletions pandas/core/series.py
Original file line number Diff line number Diff line change
Expand Up @@ -76,7 +76,7 @@
__all__ = ['Series']

_shared_doc_kwargs = dict(
axes='index', klass='Series', axes_single_arg="{0, 'index'}",
axes='index', klass='Series', axes_single_arg="{0 or 'index'}",
inplace="""inplace : boolean, default False
If True, performs operation inplace and returns None.""",
unique='np.ndarray', duplicated='Series',
Expand Down Expand Up @@ -1885,10 +1885,110 @@ def update(self, other):
# ----------------------------------------------------------------------
# Reindexing, sorting

@Appender(generic._shared_docs['sort_values'] % _shared_doc_kwargs)
#@Appender(generic._shared_docs['sort_values'] % _shared_doc_kwargs)
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We have removed the Apender because it was not generic. It was made for DataFrame.

def sort_values(self, axis=0, ascending=True, inplace=False,
kind='quicksort', na_position='last'):
"""
Sort by the Series values.

Sort (or order) a Series into ascending or descending order by some criterion.

Parameters
----------
axis : {0 or ‘index’}, default 0
Axis to direct sorting.
ascending : bool, default True
Sort ascending (True) or descending (False).
inplace : bool, default False
If True, perform operation in-place.
kind : {‘quicksort’, ‘mergesort’ or ‘heapsort’}, default ‘quicksort’
Choice of sorting algorithm. See also ndarray.np.sort [1]_ for more information. `mergesort` is the only stable
algorithm.
na_position : {'first' or 'last'}, default 'last'
Argument `first` puts NaNs at the beginning, `last` puts NaNs at the end.

Returns
-------
sorted_obj : Series
Series ordered by values.

See Also
--------
Series.sort_index : Sort by the Series indices.
DataFrame.sort_index : Sort DataFrame by indices.
DataFrame.sort_values : Sort by the values along either axis.

References
----------
.. [1] https://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html

Examples
--------
>>> s = pd.Series([np.nan, 1, 232, 323, 1, 2, 3, 45])
>>> s
0 NaN
1 1.0
2 232.0
3 323.0
4 1.0
5 2.0
6 3.0
7 45.0
dtype: float64

**Sort values ascending order**

>>> s.sort_values(ascending= True)
1 1.0
4 1.0
5 2.0
6 3.0
7 45.0
2 232.0
3 323.0
0 NaN
dtype: float64

**Sort values descending order**

>>> s.sort_values(ascending= False)
3 323.0
2 232.0
7 45.0
6 3.0
5 2.0
4 1.0
1 1.0
0 NaN
dtype: float64

**Sort values inplace**

>>> s.sort_values(ascending= False, inplace= True)
>>> s
3 323.0
2 232.0
7 45.0
6 3.0
5 2.0
4 1.0
1 1.0
0 NaN
dtype: float64

**Sort values putting NAs first**

>>> s.sort_values(na_position= 'first')
0 NaN
4 1.0
1 1.0
5 2.0
6 3.0
7 45.0
2 232.0
3 323.0
dtype: float64
"""
inplace = validate_bool_kwarg(inplace, 'inplace')
axis = self._get_axis_number(axis)

Expand Down