Skip to content

CLN: ASV indexing #19031

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Jan 3, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
77 changes: 15 additions & 62 deletions asv_bench/benchmarks/index_object.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
import numpy as np
import pandas.util.testing as tm
from pandas import (Series, date_range, DatetimeIndex, Index, MultiIndex,
RangeIndex)
from pandas import (Series, date_range, DatetimeIndex, Index, RangeIndex,
Float64Index)

from .pandas_vb_common import setup # noqa

Expand Down Expand Up @@ -84,66 +84,6 @@ def time_modulo(self, dtype):
self.index % 2


class Duplicated(object):

goal_time = 0.2

def setup(self):
n, k = 200, 5000
levels = [np.arange(n),
tm.makeStringIndex(n).values,
1000 + np.arange(n)]
labels = [np.random.choice(n, (k * n)) for lev in levels]
self.mi = MultiIndex(levels=levels, labels=labels)

def time_duplicated(self):
self.mi.duplicated()


class Sortlevel(object):

goal_time = 0.2

def setup(self):
n = 1182720
low, high = -4096, 4096
arrs = [np.repeat(np.random.randint(low, high, (n // k)), k)
for k in [11, 7, 5, 3, 1]]
self.mi_int = MultiIndex.from_arrays(arrs)[np.random.permutation(n)]

a = np.repeat(np.arange(100), 1000)
b = np.tile(np.arange(1000), 100)
self.mi = MultiIndex.from_arrays([a, b])
self.mi = self.mi.take(np.random.permutation(np.arange(100000)))

def time_sortlevel_int64(self):
self.mi_int.sortlevel()

def time_sortlevel_zero(self):
self.mi.sortlevel(0)

def time_sortlevel_one(self):
self.mi.sortlevel(1)


class MultiIndexValues(object):

goal_time = 0.2

def setup_cache(self):

level1 = range(1000)
level2 = date_range(start='1/1/2012', periods=100)
mi = MultiIndex.from_product([level1, level2])
return mi

def time_datetime_level_values_copy(self, mi):
mi.copy().values

def time_datetime_level_values_sliced(self, mi):
mi[:10].values


class Range(object):

goal_time = 0.2
Expand Down Expand Up @@ -222,3 +162,16 @@ def time_slice(self, dtype):

def time_slice_step(self, dtype):
self.idx[::2]


class Float64IndexMethod(object):
# GH 13166
goal_time = 0.2

def setup(self):
N = 100000
a = np.arange(N)
self.ind = Float64Index(a * 4.8000000418824129e-08)

def time_get_loc(self):
self.ind.get_loc(0)
Loading