Skip to content

BUG fixes tuple agg issue 18079 #18354

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Nov 26, 2017
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion doc/source/whatsnew/v0.21.1.txt
Original file line number Diff line number Diff line change
Expand Up @@ -147,4 +147,4 @@ Other
^^^^^

-
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can you revert this file

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

HI Jeff, I'm afraid my lack of git experience is showing as this file has been a bit of a thorn in my side. I'm concerned that my attempts to fix my mess will just result in wasting more of your time. Would you mind sharing the syntax necessary to revert (or reset?) this file to the proper commit?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

sure ill fix this upl

-
-
154 changes: 154 additions & 0 deletions doc/source/whatsnew/v0.21.1.txt.orig
Original file line number Diff line number Diff line change
@@ -0,0 +1,154 @@
.. _whatsnew_0211:

v0.21.1
-------

This is a minor release from 0.21.1 and includes a number of deprecations, new
features, enhancements, and performance improvements along with a large number
of bug fixes. We recommend that all users upgrade to this version.

.. _whatsnew_0211.enhancements:

New features
~~~~~~~~~~~~

-
-
-

.. _whatsnew_0211.enhancements.other:

Other Enhancements
^^^^^^^^^^^^^^^^^^

- :meth:`Timestamp.timestamp` is now available in Python 2.7. (:issue:`17329`)
-
-

.. _whatsnew_0211.deprecations:

Deprecations
~~~~~~~~~~~~

-
-
-

.. _whatsnew_0211.performance:

Performance Improvements
~~~~~~~~~~~~~~~~~~~~~~~~

- Improved performance of plotting large series/dataframes (:issue:`18236`).
-
-

.. _whatsnew_0211.docs:

Documentation Changes
~~~~~~~~~~~~~~~~~~~~~

-
-
-

.. _whatsnew_0211.bug_fixes:

Bug Fixes
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

remove this

~~~~~~~~~

Conversion
^^^^^^^^^^

- Bug in :class:`TimedeltaIndex` subtraction could incorrectly overflow when ``NaT`` is present (:issue:`17791`)
- Bug in :class:`DatetimeIndex` subtracting datetimelike from DatetimeIndex could fail to overflow (:issue:`18020`)
- Bug in :meth:`IntervalIndex.copy` when copying and ``IntervalIndex`` with non-default ``closed`` (:issue:`18339`)
- Bug in :func:`DataFrame.to_dict` where columns of datetime that are tz-aware were not converted to required arrays when used with ``orient='records'``, raising``TypeError` (:issue:`18372`)
-
-

Indexing
^^^^^^^^

- Bug in a boolean comparison of a ``datetime.datetime`` and a ``datetime64[ns]`` dtype Series (:issue:`17965`)
- Bug where a ``MultiIndex`` with more than a million records was not raising ``AttributeError`` when trying to access a missing attribute (:issue:`18165`)
- Bug in :class:`IntervalIndex` constructor when a list of intervals is passed with non-default ``closed`` (:issue:`18334`)
- Bug in ``Index.putmask`` when an invalid mask passed (:issue:`18368`)
-

I/O
^^^

- Bug in class:`~pandas.io.stata.StataReader` not converting date/time columns with display formatting addressed (:issue:`17990`). Previously columns with display formatting were normally left as ordinal numbers and not converted to datetime objects.
- Bug in :func:`read_csv` when reading a compressed UTF-16 encoded file (:issue:`18071`)
- Bug in :func:`read_csv` for handling null values in index columns when specifying ``na_filter=False`` (:issue:`5239`)
- Bug in :func:`read_csv` when reading numeric category fields with high cardinality (:issue:`18186`)
- Bug in :meth:`DataFrame.to_csv` when the table had ``MultiIndex`` columns, and a list of strings was passed in for ``header`` (:issue:`5539`)
- :func:`read_parquet` now allows to specify the columns to read from a parquet file (:issue:`18154`)
- :func:`read_parquet` now allows to specify kwargs which are passed to the respective engine (:issue:`18216`)
- Bug in parsing integer datetime-like columns with specified format in ``read_sql`` (:issue:`17855`).
- Bug in :meth:`DataFrame.to_msgpack` when serializing data of the numpy.bool_ datatype (:issue:`18390`)


Plotting
^^^^^^^^

-
-
-

Groupby/Resample/Rolling
^^^^^^^^^^^^^^^^^^^^^^^^

- Bug in ``DataFrame.resample(...).apply(...)`` when there is a callable that returns different columns (:issue:`15169`)
- Bug in ``DataFrame.resample(...)`` when there is a time change (DST) and resampling frequecy is 12h or higher (:issue:`15549`)
- Bug in ``pd.DataFrameGroupBy.count()`` when counting over a datetimelike column (:issue:`13393`)
<<<<<<< HEAD
- Bug in ``rolling.var`` where calculation is inaccurate with a zero-valued array (:issue:`18430`)
=======
- Bug when grouping by a single column and aggregating with a class like`list` or `tuple` (:issue:`18079`)
>>>>>>> added whatsnew
-
-

Sparse
^^^^^^

-
-
-

Reshaping
^^^^^^^^^

- Error message in ``pd.merge_asof()`` for key datatype mismatch now includes datatype of left and right key (:issue:`18068`)
- Bug in ``pd.concat`` when empty and non-empty DataFrames or Series are concatenated (:issue:`18178` :issue:`18187`)
- Bug in ``DataFrame.filter(...)`` when :class:`unicode` is passed as a condition in Python 2 (:issue:`13101`)
-

Numeric
^^^^^^^

- Bug in ``pd.Series.rolling.skew()`` and ``rolling.kurt()`` with all equal values has floating issue (:issue:`18044`)
-
-
-

Categorical
^^^^^^^^^^^

- Bug in :meth:`DataFrame.astype` where casting to 'category' on an empty ``DataFrame`` causes a segmentation fault (:issue:`18004`)
- Error messages in the testing module have been improved when items have different ``CategoricalDtype`` (:issue:`18069`)
- ``CategoricalIndex`` can now correctly take a ``pd.api.types.CategoricalDtype`` as its dtype (:issue:`18116`)
- Bug in ``Categorical.unique()`` returning read-only ``codes`` array when all categories were ``NaN`` (:issue:`18051`)

String
^^^^^^

- :meth:`Series.str.split()` will now propogate ``NaN`` values across all expanded columns instead of ``None`` (:issue:`18450`)

Other
^^^^^

-
-
2 changes: 1 addition & 1 deletion doc/source/whatsnew/v0.22.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -168,7 +168,7 @@ Plotting
Groupby/Resample/Rolling
^^^^^^^^^^^^^^^^^^^^^^^^

-
- Bug when grouping by a single column and aggregating with a class like ``list`` or ``tuple`` (:issue:`18079`)
-
-

Expand Down
13 changes: 13 additions & 0 deletions grp.patch
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
--- a/pandas/core/groupby.py
+++ b/pandas/core/groupby.py
@@ -3022,7 +3022,9 @@ class SeriesGroupBy(GroupBy):
if isinstance(func_or_funcs, compat.string_types):
return getattr(self, func_or_funcs)(*args, **kwargs)

- if hasattr(func_or_funcs, '__iter__'):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

remove this

+ if isinstance(func_or_funcs, collections.Iterable):
+ # Catch instances of lists / tuples
+ # but not the class list / tuple itself.
ret = self._aggregate_multiple_funcs(func_or_funcs,
(_level or 0) + 1)
else:
15 changes: 15 additions & 0 deletions grp_test.patch
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
--- a/pandas/tests/groupby/test_groupby.py
+++ b/pandas/tests/groupby/test_groupby.py
@@ -2725,3 +2725,12 @@ def _check_groupby(df, result, keys, field, f=lambda x: x.sum()):
expected = f(df.groupby(tups)[field])
for k, v in compat.iteritems(expected):
assert (result[k] == v)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

patch needs removal

+
+
+def test_tuple():
+ df = pd.DataFrame({'A': [1, 1, 1, 3, 3, 3],
+ 'B': [1, 1, 1, 4, 4, 4], 'C': [1, 1, 1, 3, 4, 4]})
+
+ result = df.groupby(['A', 'B']).aggregate(tuple)
+ result2 = df.groupby('A').aggregate(tuple)
+ result2 = df.groupby('A').aggregate([tuple])
7 changes: 4 additions & 3 deletions pandas/core/groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -2299,8 +2299,7 @@ def _aggregate_series_pure_python(self, obj, func):
for label, group in splitter:
res = func(group)
if result is None:
if (isinstance(res, (Series, Index, np.ndarray)) or
isinstance(res, list)):
if (isinstance(res, (Series, Index, np.ndarray))):
raise ValueError('Function does not reduce')
result = np.empty(ngroups, dtype='O')

Expand Down Expand Up @@ -3022,7 +3021,9 @@ def aggregate(self, func_or_funcs, *args, **kwargs):
if isinstance(func_or_funcs, compat.string_types):
return getattr(self, func_or_funcs)(*args, **kwargs)

if hasattr(func_or_funcs, '__iter__'):
if isinstance(func_or_funcs, collections.Iterable):
# Catch instances of lists / tuples
# but not the class list / tuple itself.
ret = self._aggregate_multiple_funcs(func_or_funcs,
(_level or 0) + 1)
else:
Expand Down
33 changes: 33 additions & 0 deletions pandas/tests/groupby/test_aggregate.py
Original file line number Diff line number Diff line change
Expand Up @@ -892,3 +892,36 @@ def test_sum_uint64_overflow(self):
expected.index.name = 0
result = df.groupby(0).sum()
tm.assert_frame_equal(result, expected)

@pytest.mark.parametrize("structure, expected", [
(tuple, pd.DataFrame({'C': {(1, 1): (1, 1, 1), (3, 4): (3, 4, 4)}})),
(list, pd.DataFrame({'C': {(1, 1): [1, 1, 1], (3, 4): [3, 4, 4]}})),
(lambda x: tuple(x), pd.DataFrame({'C': {(1, 1): (1, 1, 1),
(3, 4): (3, 4, 4)}})),
(lambda x: list(x), pd.DataFrame({'C': {(1, 1): [1, 1, 1],
(3, 4): [3, 4, 4]}}))
])
def test_agg_structs_dataframe(self, structure, expected):
df = pd.DataFrame({'A': [1, 1, 1, 3, 3, 3],
'B': [1, 1, 1, 4, 4, 4], 'C': [1, 1, 1, 3, 4, 4]})

result = df.groupby(['A', 'B']).aggregate(structure)
expected.index.names = ['A', 'B']
assert_frame_equal(result, expected)

@pytest.mark.parametrize("structure, expected", [
(tuple, pd.Series([(1, 1, 1), (3, 4, 4)], index=[1, 3], name='C')),
(list, pd.Series([[1, 1, 1], [3, 4, 4]], index=[1, 3], name='C')),
(lambda x: tuple(x), pd.Series([(1, 1, 1), (3, 4, 4)],
index=[1, 3], name='C')),
(lambda x: list(x), pd.Series([[1, 1, 1], [3, 4, 4]],
index=[1, 3], name='C'))
])
def test_agg_structs_series(self, structure, expected):
# Issue #18079
df = pd.DataFrame({'A': [1, 1, 1, 3, 3, 3],
'B': [1, 1, 1, 4, 4, 4], 'C': [1, 1, 1, 3, 4, 4]})

result = df.groupby('A')['C'].aggregate(structure)
expected.index.name = 'A'
assert_series_equal(result, expected)
44 changes: 44 additions & 0 deletions test_agg.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
import pandas as pd
import numpy as np

def f(x):
return list(x)

#df = pd.DataFrame({'A' : [1, 1, 3], 'B' : [1, 2, 4]})
#result = df.groupby('A').aggregate(f)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

remove this



#df = pd.DataFrame({'A' : [1, 1, 3], 'B' : [1, 2, 4]})
#result = df.groupby('A').aggregate(list)
#result = df.groupby('A').agg(list)

df = pd.DataFrame({'A' : [1, 1, 3], 'B' : [1, 1, 4], 'C' : [1, 3, 4]})
#result = df.groupby(['A', 'B']).aggregate(pd.Series)


#df = pd.DataFrame({'A': [1, 1, 1, 3, 3, 3],
# 'B': [1, 1, 1, 4, 4, 4], 'C': [1, 1, 1, 3, 4, 4]})

#print ('series ')
result = df.groupby('A')['C'].aggregate(np.array)
#print (result)
#
result = df.groupby(['A', 'B']).aggregate(np.array)
#print (result)
#
# result = df.groupby('A')['C'].aggregate(list)
# print (result)

def f(x):
return np.array(x)

print ('array')
result = df.groupby(['A', 'B']).aggregate(f)
print (result)

# result = df.groupby('A')['C'].aggregate(tuple)
# expected = pd.Series([(1, 1, 1), (3, 4, 4)], index=[1, 3], name='C')
# expected.index.name = 'A'