Skip to content

BUG: support for "level=" when reset_index() is called with a flat Index #16266

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
May 6, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion doc/source/whatsnew/v0.20.2.txt
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ Conversion
Indexing
^^^^^^^^


- Bug in ``DataFrame.reset_index(level=)`` with single level index (:issue:`16263`)


I/O
Expand Down
18 changes: 9 additions & 9 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -3012,12 +3012,12 @@ def _maybe_casted_values(index, labels=None):
return values

new_index = _default_index(len(new_obj))
if isinstance(self.index, MultiIndex):
if level is not None:
if not isinstance(level, (tuple, list)):
level = [level]
level = [self.index._get_level_number(lev) for lev in level]
if len(level) < len(self.index.levels):
if level is not None:
if not isinstance(level, (tuple, list)):
level = [level]
level = [self.index._get_level_number(lev) for lev in level]
if isinstance(self.index, MultiIndex):
if len(level) < self.index.nlevels:
new_index = self.index.droplevel(level)

if not drop:
Expand All @@ -3033,6 +3033,8 @@ def _maybe_casted_values(index, labels=None):

multi_col = isinstance(self.columns, MultiIndex)
for i, (lev, lab) in reversed(list(enumerate(to_insert))):
if not (level is None or i in level):
continue
name = names[i]
if multi_col:
col_name = (list(name) if isinstance(name, tuple)
Expand All @@ -3049,11 +3051,9 @@ def _maybe_casted_values(index, labels=None):
missing = self.columns.nlevels - len(name_lst)
name_lst += [col_fill] * missing
name = tuple(name_lst)

# to ndarray and maybe infer different dtype
level_values = _maybe_casted_values(lev, lab)
if level is None or i in level:
new_obj.insert(0, name, level_values)
new_obj.insert(0, name, level_values)

new_obj.index = new_index
if not inplace:
Expand Down
37 changes: 37 additions & 0 deletions pandas/tests/frame/test_alter_axes.py
Original file line number Diff line number Diff line change
Expand Up @@ -641,6 +641,43 @@ def test_reset_index(self):
xp = xp.set_index(['B'], append=True)
assert_frame_equal(rs, xp, check_names=False)

def test_reset_index_level(self):
df = pd.DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]],
columns=['A', 'B', 'C', 'D'])
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

issue number

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

the number is few lines after, it only applies to the flat index


for levels in ['A', 'B'], [0, 1]:
# With MultiIndex
result = df.set_index(['A', 'B']).reset_index(level=levels[0])
tm.assert_frame_equal(result, df.set_index('B'))

result = df.set_index(['A', 'B']).reset_index(level=levels[:1])
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can u add similar tests for Series (in series test hierarchy)

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

tm.assert_frame_equal(result, df.set_index('B'))

result = df.set_index(['A', 'B']).reset_index(level=levels)
tm.assert_frame_equal(result, df)

result = df.set_index(['A', 'B']).reset_index(level=levels,
drop=True)
tm.assert_frame_equal(result, df[['C', 'D']])

# With single-level Index (GH 16263)
result = df.set_index('A').reset_index(level=levels[0])
tm.assert_frame_equal(result, df)

result = df.set_index('A').reset_index(level=levels[:1])
tm.assert_frame_equal(result, df)

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

add with drop as well

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

result = df.set_index(['A']).reset_index(level=levels[0],
drop=True)
tm.assert_frame_equal(result, df[['B', 'C', 'D']])

# Missing levels - for both MultiIndex and single-level Index:
for idx_lev in ['A', 'B'], ['A']:
with tm.assert_raises_regex(KeyError, 'Level E '):
df.set_index(idx_lev).reset_index(level=['A', 'E'])
with tm.assert_raises_regex(IndexError, 'Too many levels'):
df.set_index(idx_lev).reset_index(level=[0, 1, 2])
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

it might be easier to parameteize these tests (snd make the errors a separate test)

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can you clarify?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I guess this is fine.


def test_reset_index_right_dtype(self):
time = np.arange(0.0, 10, np.sqrt(2) / 2)
s1 = Series((9.81 * time ** 2) / 2,
Expand Down
39 changes: 39 additions & 0 deletions pandas/tests/series/test_alter_axes.py
Original file line number Diff line number Diff line change
Expand Up @@ -141,6 +141,45 @@ def test_reset_index(self):
tm.assert_index_equal(rs.index, Index(index.get_level_values(1)))
assert isinstance(rs, Series)

def test_reset_index_level(self):
df = pd.DataFrame([[1, 2, 3], [4, 5, 6]],
columns=['A', 'B', 'C'])

for levels in ['A', 'B'], [0, 1]:
# With MultiIndex
s = df.set_index(['A', 'B'])['C']

result = s.reset_index(level=levels[0])
tm.assert_frame_equal(result, df.set_index('B'))

result = s.reset_index(level=levels[:1])
tm.assert_frame_equal(result, df.set_index('B'))

result = s.reset_index(level=levels)
tm.assert_frame_equal(result, df)

result = df.set_index(['A', 'B']).reset_index(level=levels,
drop=True)
tm.assert_frame_equal(result, df[['C']])

with tm.assert_raises_regex(KeyError, 'Level E '):
s.reset_index(level=['A', 'E'])

# With single-level Index
s = df.set_index('A')['B']

result = s.reset_index(level=levels[0])
tm.assert_frame_equal(result, df[['A', 'B']])

result = s.reset_index(level=levels[:1])
tm.assert_frame_equal(result, df[['A', 'B']])

result = s.reset_index(level=levels[0], drop=True)
tm.assert_series_equal(result, df['B'])

with tm.assert_raises_regex(IndexError, 'Too many levels'):
s.reset_index(level=[0, 1, 2])

def test_reset_index_range(self):
# GH 12071
s = pd.Series(range(2), name='A', dtype='int64')
Expand Down