Skip to content

BUG: Error when specifying int index containing NaN #15616

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v0.20.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -765,6 +765,7 @@ Bug Fixes
- Bug in ``DataFrame.isin`` comparing datetimelike to empty frame (:issue:`15473`)

- Bug in ``Series.where()`` and ``DataFrame.where()`` where array-like conditionals were being rejected (:issue:`15414`)
- Bug in ``Index`` construction with ``NaN`` elements and integer dtype specified (:issue:`15187`)
- Bug in ``Series`` construction with a datetimetz (:issue:`14928`)
- Bug in output formatting of a ``MultiIndex`` when names are integers (:issue:`12223`, :issue:`15262`)

Expand Down
27 changes: 23 additions & 4 deletions pandas/indexes/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -203,6 +203,9 @@ def __new__(cls, data=None, dtype=None, copy=False, name=None,
if inferred == 'integer':
data = np.array(data, copy=copy, dtype=dtype)
elif inferred in ['floating', 'mixed-integer-float']:
if isnull(data).any():
raise ValueError('cannot convert float '
'NaN to integer')

# If we are actually all equal to integers,
# then coerce to integer.
Expand Down Expand Up @@ -230,8 +233,10 @@ def __new__(cls, data=None, dtype=None, copy=False, name=None,
else:
data = np.array(data, dtype=dtype, copy=copy)

except (TypeError, ValueError):
pass
except (TypeError, ValueError) as e:
msg = str(e)
if 'cannot convert float' in msg:
raise

# maybe coerce to a sub-class
from pandas.tseries.period import (PeriodIndex,
Expand Down Expand Up @@ -585,7 +590,14 @@ def where(self, cond, other=None):
if other is None:
other = self._na_value
values = np.where(cond, self.values, other)
return self._shallow_copy_with_infer(values, dtype=self.dtype)

dtype = self.dtype
if self._is_numeric_dtype and np.any(isnull(values)):
# We can't coerce to the numeric dtype of "self" (unless
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

-> isnull(values).any()

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Breaks if values is a scalar.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

hmm, that's annoying. ok then.

# it's float) if there are NaN values in our output.
dtype = None

return self._shallow_copy_with_infer(values, dtype=dtype)

def ravel(self, order='C'):
"""
Expand Down Expand Up @@ -689,7 +701,14 @@ def _coerce_scalar_to_index(self, item):
----------
item : scalar item to coerce
"""
return Index([item], dtype=self.dtype, **self._get_attributes_dict())
dtype = self.dtype

if self._is_numeric_dtype and isnull(item):
# We can't coerce to the numeric dtype of "self" (unless
# it's float) if there are NaN values in our output.
dtype = None

return Index([item], dtype=dtype, **self._get_attributes_dict())

_index_shared_docs['copy'] = """
Make a copy of this object. Name and dtype sets those attributes on
Expand Down
17 changes: 17 additions & 0 deletions pandas/tests/indexes/test_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -199,6 +199,23 @@ def __array__(self, dtype=None):
result = pd.Index(ArrayLike(array))
self.assert_index_equal(result, expected)

def test_constructor_int_dtype_nan(self):
# see gh-15187
data = [np.nan]
msg = "cannot convert"

with tm.assertRaisesRegexp(ValueError, msg):
Index(data, dtype='int64')

with tm.assertRaisesRegexp(ValueError, msg):
Index(data, dtype='uint64')

# This, however, should not break
# because NaN is float.
expected = Float64Index(data)
result = Index(data, dtype='float')
tm.assert_index_equal(result, expected)

def test_index_ctor_infer_nan_nat(self):
# GH 13467
exp = pd.Float64Index([np.nan, np.nan])
Expand Down
27 changes: 26 additions & 1 deletion pandas/tests/indexes/test_numeric.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@

import numpy as np

from pandas import (date_range, Series, Index, Float64Index,
from pandas import (date_range, notnull, Series, Index, Float64Index,
Int64Index, UInt64Index, RangeIndex)

import pandas.util.testing as tm
Expand Down Expand Up @@ -686,6 +686,31 @@ def test_coerce_list(self):
arr = Index([1, 2, 3, 4], dtype=object)
tm.assertIsInstance(arr, Index)

def test_where(self):
i = self.create_index()
result = i.where(notnull(i))
expected = i
tm.assert_index_equal(result, expected)

_nan = i._na_value
cond = [False] + [True] * len(i[1:])
expected = pd.Index([_nan] + i[1:].tolist())

result = i.where(cond)
tm.assert_index_equal(result, expected)

def test_where_array_like(self):
i = self.create_index()

_nan = i._na_value
cond = [False] + [True] * (len(i) - 1)
klasses = [list, tuple, np.array, pd.Series]
expected = pd.Index([_nan] + i[1:].tolist())

for klass in klasses:
result = i.where(klass(cond))
tm.assert_index_equal(result, expected)

def test_get_indexer(self):
target = Int64Index(np.arange(10))
indexer = self.index.get_indexer(target)
Expand Down
28 changes: 27 additions & 1 deletion pandas/tests/indexes/test_range.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,8 @@

import numpy as np

from pandas import (Series, Index, Float64Index, Int64Index, RangeIndex)
from pandas import (notnull, Series, Index, Float64Index,
Int64Index, RangeIndex)
from pandas.util.testing import assertRaisesRegexp

import pandas.util.testing as tm
Expand Down Expand Up @@ -915,3 +916,28 @@ def test_len_specialised(self):

i = RangeIndex(0, 5, step)
self.assertEqual(len(i), 0)

def test_where(self):
i = self.create_index()
result = i.where(notnull(i))
expected = i
tm.assert_index_equal(result, expected)

_nan = i._na_value
cond = [False] + [True] * len(i[1:])
expected = pd.Index([_nan] + i[1:].tolist())

result = i.where(cond)
tm.assert_index_equal(result, expected)

def test_where_array_like(self):
i = self.create_index()

_nan = i._na_value
cond = [False] + [True] * (len(i) - 1)
klasses = [list, tuple, np.array, pd.Series]
expected = pd.Index([_nan] + i[1:].tolist())

for klass in klasses:
result = i.where(klass(cond))
tm.assert_index_equal(result, expected)