Skip to content

AttributeError: 'Hour' object has no attribute 'normalize' when masking a time series #7748

Closed
@leroygr

Description

@leroygr

Hi All,

I have a strange bug when I want to mask values of a time series (that I get from a pickled Panel).

I have the following Series:

In[30]: ts=pd.read_pickle('df_issue.pkl')['wind_speed']

In [31]:ts
Out[31]: 
2013-12-31 16:00:00         NaN
2013-12-31 17:00:00         NaN
2013-12-31 18:00:00    9.845031
2013-12-31 19:00:00         NaN
2013-12-31 20:00:00         NaN
2013-12-31 21:00:00         NaN
2013-12-31 22:00:00         NaN
2013-12-31 23:00:00         NaN
Freq: H, Name: wind_speed, dtype: float64

And I have an exception when I try to mask it:

In [32]: ts<0.
Traceback (most recent call last):

  File "<ipython-input-32-534147d368f7>", line 1, in <module>
    ts<0.

  File "/usr/local/lib/python2.7/dist-packages/pandas/core/ops.py", line 585, in wrapper
    res[mask] = masker

  File "/usr/local/lib/python2.7/dist-packages/pandas/core/series.py", line 637, in __setitem__
    self.where(~key, value, inplace=True)

  File "/usr/local/lib/python2.7/dist-packages/pandas/core/generic.py", line 3238, in where
    inplace=True)

  File "/usr/local/lib/python2.7/dist-packages/pandas/core/internals.py", line 2219, in putmask
    return self.apply('putmask', **kwargs)

  File "/usr/local/lib/python2.7/dist-packages/pandas/core/internals.py", line 2185, in apply
    b_items = self.items[b.mgr_locs.indexer]

  File "/usr/local/lib/python2.7/dist-packages/pandas/tseries/index.py", line 1387, in __getitem__
    new_offset = key.step * self.offset

  File "/usr/local/lib/python2.7/dist-packages/pandas/tseries/offsets.py", line 265, in __rmul__
    return self.__mul__(someInt)

  File "/usr/local/lib/python2.7/dist-packages/pandas/tseries/offsets.py", line 262, in __mul__
    return self.__class__(n=someInt * self.n, normalize=self.normalize, **self.kwds)

AttributeError: 'Hour' object has no attribute 'normalize'

If I make the same Series manually, it is working:

ts1=pd.Series(data=[np.nan,np.nan,9.845031]+[np.nan]*5,index=pd.date_range('2013-12-31 16:00:00',periods=8,freq='H'))

In [36]: ts1
Out[36]: 
2013-12-31 16:00:00         NaN
2013-12-31 17:00:00         NaN
2013-12-31 18:00:00    9.845031
2013-12-31 19:00:00         NaN
2013-12-31 20:00:00         NaN
2013-12-31 21:00:00         NaN
2013-12-31 22:00:00         NaN
2013-12-31 23:00:00         NaN
Freq: H, dtype: float64

In [37]: ts1<0.
Out[37]: 
2013-12-31 16:00:00    False
2013-12-31 17:00:00    False
2013-12-31 18:00:00    False
2013-12-31 19:00:00    False
2013-12-31 20:00:00    False
2013-12-31 21:00:00    False
2013-12-31 22:00:00    False
2013-12-31 23:00:00    False
Freq: H, dtype: bool

I really don't understand why...
You can find the pickle file here: http://we.tl/lrsFvmanVl

Thanks,
Greg

Here is the show_version output:

INSTALLED VERSIONS

commit: None
python: 2.7.3.final.0
python-bits: 64
OS: Linux
OS-release: 3.8.0-37-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8

pandas: 0.14.1
nose: 1.3.0
Cython: 0.20.1
numpy: 1.8.1
scipy: 0.13.3
statsmodels: 0.6.0.dev-Unknown
IPython: 1.1.0
sphinx: 1.1.3
patsy: 0.2.1
scikits.timeseries: None
dateutil: 2.2
pytz: 2014.4
bottleneck: 0.6.0
tables: 3.1.1
numexpr: 2.0.1
matplotlib: 1.3.1
openpyxl: 1.7.0
xlrd: 0.9.2
xlwt: 0.7.2
xlsxwriter: None
lxml: 3.0.0
bs4: 4.3.2
html5lib: None
httplib2: 0.7.2
apiclient: None
rpy2: None
sqlalchemy: None
pymysql: None
psycopg2: None

Metadata

Metadata

Assignees

No one assigned

    Labels

    Compatpandas objects compatability with Numpy or Python functions

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions