Closed
Description
Possibly related to issue #7574:
Suppose I have a DataFrame:
In [61]: df
Out[61]:
ref localtime size
0 45361866 2014-06-25 14:11:11.753597 100
1 45361866 2014-06-25 14:11:11.753769 100
2 45361866 2014-06-25 14:11:11.754350 200
3 45361866 2014-06-25 14:11:11.756413 200
4 45361866 2014-06-25 14:18:59.442972 200
.. ... ... ...
29 204286294 2014-06-25 19:43:27.770083 100
30 204286294 2014-06-25 19:43:27.771266 7036
31 216308339 2014-06-25 19:57:32.468547 100
32 216308339 2014-06-25 19:57:37.534973 200
33 216308339 2014-06-25 19:57:37.535035 300
[34 rows x 3 columns]
If I aggregate over an integer, the resulting types are as expected:
In [62]: df.groupby('ref').first().reset_index().dtypes
Out[62]:
ref int64
localtime datetime64[ns]
size int64
dtype: object
However, if I aggregate on an empty DataFrame, then my timestamp's type is converted from datetime64 to float64:
In [63]: df.query('size>10000').groupby('ref').first().reset_index().dtypes
Out[63]:
index int64
localtime float64
size float64
dtype: object
Metadata
Metadata
Assignees
Labels
No labels