Skip to content

BUG: Inconsistency when converting week PeriodIndex into DatetimeIndex with astype("datetime64[ns]") #61177

Open
@dbalabka

Description

@dbalabka

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd

dates = pd.date_range(start=pd.to_datetime("2018-01-01"), end=pd.to_datetime("2018-01-31"))
period_index = dates.to_period(freq="W")

# 2018-01-01
period_label_1 = period_index.astype("datetime64[ns]")[0]

# 2018-01-07
period_label_2 = period_index.asfreq('D').astype("datetime64[ns]")[0]

# I'm expecting that these values should be the same. However, it is not.
assert period_label_1 == period_label_2

Issue Description

Let's imagine you have a column with dates:

dates = pd.date_range(start=pd.to_datetime("2018-01-01"), end=pd.to_datetime("2018-01-31"))
DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
                ....               
               '2018-01-29', '2018-01-30', '2018-01-31'],
              dtype='datetime64[ns]', freq='D')

We want to convert them into a week period, with each date replaced with the period label. We will use the default frequency W, with each date replaced with the period ending on the preceding Sunday:

dates Expected Week Period
2018-01-01 2018-01-07
2018-01-02 2018-01-07
2018-01-03 2018-01-07
... ...
2018-01-29 2018-02-04
2018-01-30 2018-02-04
2018-01-31 2018-02-04

Let's create a PeriodIndex where each date value is replaced with Period object

period_index = dates.to_period(freq="W")
PeriodIndex(['2018-01-01/2018-01-07', '2018-01-01/2018-01-07',
             ...
             '2018-01-29/2018-02-04'],
            dtype='period[W-SUN]')

Then we would like to take only one day instead of PeriodIndex. The simplest solution is to convert the column type into datetime64[ns]:

period_index.astype("datetime64[ns]")[0]

However, an unexpected day appears. Instead of period end 2018-01-07, pandas returns period start:

Timestamp('2018-01-01 00:00:00')

Expected Behavior

There is a trick that helps to fix this behavior. Firstly, we convert the Period values back to daily frequency and then transform into datetime64[ns]:

period_index.asfreq('D').astype("datetime64[ns]")[0]
Timestamp('2018-01-07 00:00:00')

Such behavior should be documented or/and the warning should be raised that direct conversion of the PeriodIndex into "datetime64[ns]" is not aligned with expected behavior.

Installed Versions

INSTALLED VERSIONS

commit : 0691c5c
python : 3.11.7
python-bits : 64
OS : Linux
OS-release : 5.15.167.4-microsoft-standard-WSL2
Version : #1 SMP Tue Nov 5 00:21:55 UTC 2024
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : C.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.2.3
numpy : 1.26.3
pytz : 2025.1
dateutil : 2.8.2
pip : 23.2.1
Cython : None
sphinx : None
IPython : 8.20.0
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.3
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : 2023.12.2
html5lib : None
hypothesis : None
gcsfs : 2023.12.2post1
jinja2 : 3.1.3
lxml.etree : None
matplotlib : 3.8.2
numba : 0.60.0
numexpr : None
odfpy : None
openpyxl : 3.1.2
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : 14.0.2
pyreadstat : None
pytest : 7.4.4
python-calamine : None
pyxlsb : None
s3fs : 2023.12.2
scipy : 1.12.0
sqlalchemy : 2.0.29
tables : None
tabulate : 0.9.0
xarray : None
xlrd : None
xlsxwriter : None
zstandard : None
tzdata : 2023.4
qtpy : None
pyqt5 : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    BugDatetimeDatetime data dtypeDtype ConversionsUnexpected or buggy dtype conversionsNeeds DiscussionRequires discussion from core team before further actionPeriodPeriod data type

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions