Skip to content

PERF: df.astype("float64[pyarrow]") is slow, df.astype("Float64") is super slow #60066

Closed
@auderson

Description

@auderson

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this issue exists on the latest version of pandas.

  • I have confirmed this issue exists on the main branch of pandas.

Reproducible Example

import pandas as pd
import numpy as np

df = pd.DataFrame(np.zeros((5000, 5000)))
%%time
_ = df.astype("Float64")

CPU times: user 3.87 s, sys: 185 ms, total: 4.05 s
Wall time: 4.05 s

%%timeit
_ = df.astype("float64[pyarrow]")

566 ms ± 15.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%%timeit
_ = df.astype("float64", copy=True)

148 ms ± 984 μs per loop (mean ± std. dev. of 7 runs, 10 loops each)

It takes over 4s for a middle-sized dataframe of 5000 x 5000 to convert to Float64, while float64[pyarrow] is about 7x faster. The fastest float64 takes only 150ms, even with copy enabled.

Installed Versions

INSTALLED VERSIONS

commit : 0691c5c
python : 3.10.14
python-bits : 64
OS : Linux
OS-release : 5.15.0-122-generic
Version : #132-Ubuntu SMP Thu Aug 29 13:45:52 UTC 2024
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 2.2.3
numpy : 1.26.4
pytz : 2024.1
dateutil : 2.9.0
pip : 24.0
Cython : 3.0.7
sphinx : 7.3.7
IPython : 8.25.0
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.3
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : 2024.6.0
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : 3.1.4
lxml.etree : None
matplotlib : 3.9.2
numba : 0.60.0
numexpr : 2.10.0
odfpy : None
openpyxl : None
pandas_gbq : None
psycopg2 : 2.9.9
pymysql : 1.4.6
pyarrow : 16.1.0
pyreadstat : None
pytest : 8.2.2
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.14.0
sqlalchemy : 2.0.31
tables : 3.9.2
tabulate : None
xarray : None
xlrd : None
xlsxwriter : None
zstandard : 0.22.0
tzdata : 2024.1
qtpy : 2.4.1
pyqt5 : None

Prior Performance

No response

Metadata

Metadata

Assignees

Labels

ConstructorsSeries/DataFrame/Index/pd.array ConstructorsExtensionArrayExtending pandas with custom dtypes or arrays.PerformanceMemory or execution speed performancegood first issue

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions