Skip to content

BUG: Rolling .apply() with method='table' ignores min_periods #58868

Closed
@kasparthommen

Description

@kasparthommen

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd

df = pd.DataFrame([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]], columns=['A', 'B'])
print(df)

# prints this:
#    A   B
# 0  1   2
# 1  3   4
# 2  5   6
# 3  7   8
# 4  9  10

df.rolling(3, min_periods=3).apply(lambda x: bool(print(x, '\n')))

# prints this, so as expected, only batches of 3 are being evaluated
# 0    1.0
# 1    3.0
# 2    5.0
# dtype: float64 
# 
# 1    3.0
# 2    5.0
# 3    7.0
# dtype: float64 
# 
# 2    5.0
# 3    7.0
# 4    9.0
# dtype: float64 
# 
# 0    2.0
# 1    4.0
# 2    6.0
# dtype: float64 
# 
# 1    4.0
# 2    6.0
# 3    8.0
# dtype: float64 
# 
# 2     6.0
# 3     8.0
# 4    10.0
# dtype: float64 
# 
# Out[33]: 
#      A    B
# 0  NaN  NaN
# 1  NaN  NaN
# 2  0.0  0.0
# 3  0.0  0.0
# 4  0.0  0.0

df.rolling(3, method='table', min_periods=3).apply(lambda x: bool(print(x, '\n')), raw=True, engine='numba')

# prints this, where we see that the first two batches of sizes 1 and 2 are also being evaluated
# [[1. 2.]]   <-- batch of size 1, illegal
# 
# [[1. 2.]    <-- batch of size 2, illegal
#  [3. 4.]] 
# 
# [[1. 2.]
#  [3. 4.]
#  [5. 6.]] 
# 
# [[3. 4.]
#  [5. 6.]
#  [7. 8.]] 
# 
# [[ 5.  6.]
#  [ 7.  8.]
#  [ 9. 10.]] 
# Out[34]: 
#      A    B
# 0  NaN  NaN
# 1  NaN  NaN
# 2  0.0  0.0
# 3  0.0  0.0
# 4  0.0  0.0

Issue Description

See example above, which violates the contract imposed by the min_periods parameter.

Expected Behavior

The min_periods parameter should be respected.

Installed Versions

INSTALLED VERSIONS

commit : d9cdd2e
python : 3.12.3.final.0
python-bits : 64
OS : Windows
OS-release : 11
Version : 10.0.22631
machine : AMD64
processor : Intel64 Family 6 Model 165 Stepping 2, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : German_Switzerland.utf8
pandas : 2.2.2
numpy : 1.26.4
pytz : 2024.1
dateutil : 2.9.0
setuptools : 69.5.1
pip : 24.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 5.2.2
html5lib : 1.1
pymysql : None
psycopg2 : None
jinja2 : 3.1.4
IPython : 8.24.0
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.3
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : 3.8.4
numba : 0.59.1
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 16.0.0
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.13.0
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2024.1
qtpy : None
pyqt5 : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    ApplyApply, Aggregate, Transform, MapBugWindowrolling, ewma, expandingnumbanumba-accelerated operations

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions