Open
Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
When creating a dataframe with an index containing non-ascii chars, pandas is merging different keys into a single key.
import pandas as pd
car = "é".encode("latin1").decode('utf8', 'surrogateescape')
data = [(1,"a-"+car, "x-"+car), (2, "b-"+car, "y-"+car)]
df = pd.DataFrame(data, columns=["c1", "c2", "c3"]).set_index(["c2", "c3"]).reset_index()
print(list(df["c3"]))
returns the same two keys:
['x-\udce9', 'x-\udce9']
Expected behavior:
['x-\udce9', 'y-\udce9']
Note that when using ascii chars, the behavior is correct:
import pandas as pd
car = "0"
data = [(1,"a-"+car, "x-"+car), (2, "b-"+car, "y-"+car)]
df = pd.DataFrame(data, columns=["c1", "c2", "c3"]).set_index(["c2", "c3"]).reset_index()
print(list(df["c3"]))
returns two different keys:
['x-0', 'y-0']
Note that the behavior is correct with non-ascii char and using a single column in the index:
car = "é".encode("latin1").decode('utf8', 'surrogateescape')
data = [(1,"a-"+car, "x-"+car), (2, "b-"+car, "y-"+car)]
df = pd.DataFrame(data, columns=["c1", "c2", "c3"]).set_index(["c3"]).reset_index()
print(list(df["c3"]))
returns two different keys:
['x-\udce9', 'y-\udce9']
Issue Description
Creating a multi-index with non-ascii characters will not keep unique indices. Instead, keys are merged.
Expected Behavior
Creating a multi-index with non-ascii characters should keep unique keys.
Installed Versions
INSTALLED VERSIONS
------------------
commit : bdc79c146c2e32f2cab629be240f01658cfb6cc2
python : 3.12.1.final.0
python-bits : 64
OS : Linux
OS-release : 3.10.105
Version : #25556 SMP Sat Aug 28 02:13:34 CST 2021
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : en_US.UTF-8
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.2.1
numpy : 1.26.4
pytz : 2024.1
dateutil : 2.9.0.post0
setuptools : None
pip : 24.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.3
IPython : 8.22.2
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.3
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2024.1
qtpy : None
pyqt5 : None