Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
import datetime
data = {'Column1': [1, 2, 3, 33],
'Column2': [4, 5, 6, 66],
'Column3': [7, 8, 9, 99]}
df = pd.DataFrame(data)
# once the below is uncommented, the pd.concat would fail...
# df["Column2"] = datetime.datetime(2018, 1, 1)
# ... if this is uncommented, it would work though
# df["Column2"] = datetime.date(2018, 1, 1)
random_rows = pd.DataFrame([row for _, row in df.sample(n=3).iterrows()])
df = pd.concat([df, random_rows])
print(df)
Issue Description
The pd.concat
of two dataframes fails when two conditions are met:
- one of the columns is
datetime
(if it isdate
everything works though) - the second dataframe in
concat
was constructed using.iterrows()
Changing iterrows()
to itertuples()
(in case something broke down in types) doesn't solve the problem
Expected Behavior
It works with the date
object, so would expect it to be a bug.
Installed Versions
INSTALLED VERSIONS
commit : a671b5a
python : 3.11.7.final.0
python-bits : 64
OS : Darwin
OS-release : 23.1.0
Version : Darwin Kernel Version 23.1.0: Mon Oct 9 21:28:12 PDT 2023; root:xnu-10002.41.9~6/RELEASE_ARM64_T8103
machine : arm64
processor : arm
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.1.4
numpy : 1.26.3
pytz : 2023.3.post1
dateutil : 2.8.2
setuptools : 68.2.2
pip : 23.3.1
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader : None
bs4 : None
bottleneck : 1.3.5
dataframe-api-compat: None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : None
numba : None
numexpr : 2.8.7
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None