Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
import numpy as np
unique_values = np.arange(30, dtype=np.uint32)
data = np.random.choice(unique_values, size=1_000_000)
s = pd.Series(data)
%timeit s.groupby(s).nunique()
%timeit s.groupby(s).unique().apply(len)
Issue Description
I expect nunique()
to be at least as fast as unique.apply(len)
, however, it is much slower in the reproducible example I provided (3x slower).
On my computer I have the following performance:
%timeit s.groupby(s).nunique()
103 ms ± 942 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit s.groupby(s).unique().apply(len)
31.1 ms ± 603 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
Expected Behavior
nunique()
is at least as fast as unique.apply(len)
,
Installed Versions
INSTALLED VERSIONS
commit : 0f43794
python : 3.11.5.final.0
python-bits : 64
OS : Linux
OS-release : 6.5.11-300.fc39.x86_64
Version : #1 SMP PREEMPT_DYNAMIC Wed Nov 8 22:37:57 UTC 2023
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.0.3
numpy : 1.24.3
pytz : 2023.3.post1
dateutil : 2.8.2
setuptools : 68.0.0
pip : 23.3
Cython : 3.0.0
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.9.3
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.15.0
pandas_datareader: 0.10.0
bs4 : 4.12.2
bottleneck : 1.3.5
brotli : 1.0.9
fastparquet : None
fsspec : 2023.9.2
gcsfs : None
matplotlib : 3.8.0
numba : 0.57.1
numexpr : 2.8.7
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 11.0.0
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.11.3
snappy :
sqlalchemy : 2.0.21
tables : None
tabulate : 0.8.10
xarray : 2023.6.0
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : 2.2.0
pyqt5 : None