Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
ts = pd.Timestamp.now()
df = pd.DataFrame({"a": [1]})
df["direct_assignment"] = ts
df["series_assignment"] = pd.Series(ts)
df.dtypes
yields
```python
a int64
direct_assignment datetime64[us]
series_assignment datetime64[ns]
dtype: object
yields
Issue Description
I was surprised to see the dtype mismatch here
Expected Behavior
At least for backwards compatability we might want to still make the scalar assignment still yield nanosecond resolution
Installed Versions
INSTALLED VERSIONS
commit : c2cd90a
python : 3.10.12.final.0
python-bits : 64
OS : Linux
OS-release : 6.2.0-33-generic
Version : #33-Ubuntu SMP PREEMPT_DYNAMIC Tue Sep 5 14:49:19 UTC 2023
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.2.0dev0+341.gc2cd90ac54
numpy : 1.24.4
pytz : 2023.3.post1
dateutil : 2.8.2
setuptools : 68.0.0
pip : 23.2.1
Cython : 0.29.33
pytest : 7.4.2
hypothesis : 6.87.1
sphinx : 7.2.6
blosc : None
feather : None
xlsxwriter : 3.1.6
lxml.etree : 4.9.3
html5lib : 1.1
pymysql : 1.4.6
psycopg2 : 2.9.7
jinja2 : 3.1.2
IPython : 8.16.1
pandas_datareader : None
bs4 : 4.12.2
bottleneck : 1.3.7
dataframe-api-compat: None
fastparquet : 2023.8.0
fsspec : 2023.9.2
gcsfs : 2023.9.2
matplotlib : 3.7.3
numba : 0.57.1
numexpr : 2.8.7
odfpy : None
openpyxl : 3.1.2
pandas_gbq : None
pyarrow : 13.0.0
pyreadstat : 1.2.3
python-calamine : None
pyxlsb : 1.0.10
s3fs : 2023.9.2
scipy : 1.11.3
sqlalchemy : 2.0.21
tables : 3.8.0
tabulate : 0.9.0
xarray : 2023.9.0
xlrd : 2.0.1
zstandard : 0.21.0
tzdata : 2023.3
qtpy : None
pyqt5 : None