Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
The test suite, specifically TestFrameFlexArithmetic.test_floordiv_axis0_numexpr_path[python-pow]
This does integer pow() where most of the inputs are multiples of 100 (e.g. 20100**100) and the mathematically correct result is hence a multiple of 2**100. This is 0 mod 2**64, and plain pandas returns 0, but this example is a large enough array to use numexpr by default.
Issue Description
With numexpr 2.8.5 it instead returns -2**63, and hence the test fails.
=================================== FAILURES ===================================
483s _____ TestFrameFlexArithmetic.test_floordiv_axis0_numexpr_path[python-pow] _____
483s
483s self = <pandas.tests.frame.test_arithmetic.TestFrameFlexArithmetic object at 0x7fa71aebc1d0>
483s opname = 'pow'
483s
483s @pytest.mark.skipif(not NUMEXPR_INSTALLED, reason="numexpr not installed")
483s @pytest.mark.parametrize("opname", ["floordiv", "pow"])
483s def test_floordiv_axis0_numexpr_path(self, opname):
483s # case that goes through numexpr and has to fall back to masked_arith_op
483s op = getattr(operator, opname)
483s
483s arr = np.arange(_MIN_ELEMENTS + 100).reshape(_MIN_ELEMENTS // 100 + 1, -1) * 100
483s df = DataFrame(arr)
483s df["C"] = 1.0
483s
483s ser = df[0]
483s result = getattr(df, opname)(ser, axis=0)
483s
483s expected = DataFrame({col: op(df[col], ser) for col in df.columns})
483s > tm.assert_frame_equal(result, expected)
483s
483s /usr/lib/python3/dist-packages/pandas/tests/frame/test_arithmetic.py:510:
483s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
483s
483s > ???
483s
483s pandas/_libs/testing.pyx:52:
483s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
483s
483s > ???
483s E AssertionError: DataFrame.iloc[:, 0] (column name="0") are different
483s E
483s E DataFrame.iloc[:, 0] (column name="0") values are different (99.99 %)
483s E [index]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, ...]
483s E [left]: [1, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, -9223372036854775808, ...]
483s E [right]: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...]
483s
Expected Behavior
The test should pass.
I don't know whether pandas has documented integer overflow behaviour, but if it does it should follow it.
Installed Versions
Happens with numexpr 2.8.5 and not with 2.8.4. (This is not #54449, though I do also see that bug - that's an explicit exception, this is a changed answer.)
Seen in both pandas 1.5.3 and pandas 2.0.3.