Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
>>> import pandas as pd
>>> t = pd.Timestamp("01:01:01.01").as_unit('ns')
>>> t
Timestamp('2023-05-08 01:01:01') # it seems ok
>>> t.timestamp()
1683507661.0 # lost milliseconds
>>> pd.Timestamp("01:01:01.01").as_unit('ns').timestamp()
1683507661.0 # still lost milliseconds
>>> pd.DataFrame([[pd.Timestamp("01:01:01.01")]]).dtypes
0 datetime64[ns]
dtype: object
>>> pd.DataFrame([[pd.Timestamp("01:01:01.01")]])
# no milliseconds also
0
0 2023-05-08 01:01:01
Issue Description
I know that Pandas 2 uses seconds as a default unit: #52653; I think something goes wrong when I want to more precise time. Look at the example; milliseconds are lost even when I use as_unit
. Also, when converted to data frame type suggest that precision is ns
but does not show milliseconds.
Am I doing something wrong or is it a bug?
Expected Behavior
I think milliseconds should be in timestamp at least when precision is set to ns
by as_unit
.
Installed Versions
INSTALLED VERSIONS
commit : 37ea63d
python : 3.10.10.final.0
python-bits : 64
OS : Darwin
OS-release : 22.4.0
Version : Darwin Kernel Version 22.4.0: Mon Mar 6 20:59:28 PST 2023; root:xnu-8796.101.5~3/RELEASE_ARM64_T6000
machine : arm64
processor : arm
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.UTF-8
pandas : 2.0.1
numpy : 1.24.3
pytz : 2023.3
dateutil : 2.8.2
setuptools : 67.7.2
pip : 23.1.1
Cython : 0.29.34
pytest : None
hypothesis : None
sphinx : 6.1.3
blosc : None
feather : None
xlsxwriter : 3.1.0
lxml.etree : 4.9.2
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.12.0
pandas_datareader: None
bs4 : 4.12.2
bottleneck : 1.3.7
brotli : None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : 3.7.1
numba : None
numexpr : None
odfpy : None
openpyxl : 3.1.2
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.10.1
snappy : None
sqlalchemy : 1.4.47
tables : None
tabulate : 0.9.0
xarray : None
xlrd : 2.0.1
zstandard : None
tzdata : 2023.3
qtpy : 2.3.1
pyqt5 : None