Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
In [1]: import pandas as pd
In [2]: pdf = pd.DataFrame({"a": [32424324, None, None], "b": [24242342, 3432434234, 23434234]})
In [3]: pdf = pdf.astype("datetime64[s]")
In [4]: pdf
Out[4]:
a b
0 1971-01-11 06:45:24 1970-10-08 13:59:02
1 NaT 2078-10-08 05:57:14
2 NaT 1970-09-29 05:30:34
In [5]: pdf.dtypes
Out[5]:
a datetime64[s]
b datetime64[s]
dtype: object
In [6]: pdf['a'] - pdf['b']
Out[6]:
0 94 days 16:46:22
1 NaT
2 NaT
dtype: timedelta64[s]
In [7]: def udf(row):
...: return operator.sub(row['a'], row['b'])
...:
In [8]: import operator
In [10]: result = pdf.apply(udf, axis=1)
In [11]: result
Out[11]:
0 94 days 16:46:22
1 NaT
2 NaT
dtype: timedelta64[ns] # BUG: Should be `timedelta64[s]`, to be consistent with the rest of the calls
In [13]: operator.sub(pdf['a'], pdf['b'])
Out[13]:
0 94 days 16:46:22
1 NaT
2 NaT
dtype: timedelta64[s]
In [14]: pdf['a'] - pdf['b']
Out[14]:
0 94 days 16:46:22
1 NaT
2 NaT
dtype: timedelta64[s]
In [15]: pdf['a'][0] - pdf['b'][0]
Out[15]: Timedelta('94 days 16:46:22')
In [18]: (pdf['a'][0] - pdf['b'][0]).unit
Out[18]: 's'
Issue Description
A binop, being performed as a UDF seems to be always returning ns
dtype as opposed to the correct dtype(s
in the above case).
Expected Behavior
In [14]: pdf.apply(udf, axis=1)
Out[14]:
0 94 days 16:46:22
1 NaT
2 NaT
dtype: timedelta64[s]
Installed Versions
INSTALLED VERSIONS
commit : c2a7f1a
python : 3.10.10.final.0
python-bits : 64
OS : Linux
OS-release : 4.15.0-76-generic
Version : #86-Ubuntu SMP Fri Jan 17 17:24:28 UTC 2020
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.0.0rc1
numpy : 1.23.5
pytz : 2023.3
dateutil : 2.8.2
setuptools : 67.6.1
pip : 23.0.1
Cython : 0.29.33
pytest : 7.2.2
hypothesis : 6.70.1
sphinx : 5.3.0
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.12.0
pandas_datareader: None
bs4 : 4.12.0
bottleneck : None
brotli :
fastparquet : None
fsspec : 2023.3.0
gcsfs : None
matplotlib : None
numba : 0.56.4
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 11.0.0
pyreadstat : None
pyxlsb : None
s3fs : 2023.3.0
scipy : 1.10.1
snappy :
sqlalchemy : 1.4.46
tables : None
tabulate : 0.9.0
xarray : None
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None