Skip to content

BUG: UDFs with apply returning nanoseconds when compared to native binops that return seconds #52411

Open
@galipremsagar

Description

@galipremsagar

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

In [1]: import pandas as pd

In [2]: pdf = pd.DataFrame({"a": [32424324, None, None], "b": [24242342, 3432434234, 23434234]})

In [3]: pdf = pdf.astype("datetime64[s]")

In [4]: pdf
Out[4]: 
                    a                   b
0 1971-01-11 06:45:24 1970-10-08 13:59:02
1                 NaT 2078-10-08 05:57:14
2                 NaT 1970-09-29 05:30:34

In [5]: pdf.dtypes
Out[5]: 
a    datetime64[s]
b    datetime64[s]
dtype: object

In [6]: pdf['a'] - pdf['b']
Out[6]: 
0   94 days 16:46:22
1                NaT
2                NaT
dtype: timedelta64[s]

In [7]: def udf(row):
   ...:     return operator.sub(row['a'], row['b'])
   ...: 

In [8]: import operator

In [10]: result = pdf.apply(udf, axis=1)

In [11]: result
Out[11]: 
0   94 days 16:46:22
1                NaT
2                NaT
dtype: timedelta64[ns]          # BUG: Should be `timedelta64[s]`, to be consistent with the rest of the calls

In [13]: operator.sub(pdf['a'], pdf['b'])
Out[13]: 
0   94 days 16:46:22
1                NaT
2                NaT
dtype: timedelta64[s]

In [14]: pdf['a'] - pdf['b']
Out[14]: 
0   94 days 16:46:22
1                NaT
2                NaT
dtype: timedelta64[s]

In [15]: pdf['a'][0] - pdf['b'][0]
Out[15]: Timedelta('94 days 16:46:22')

In [18]: (pdf['a'][0] - pdf['b'][0]).unit
Out[18]: 's'

Issue Description

A binop, being performed as a UDF seems to be always returning ns dtype as opposed to the correct dtype(s in the above case).

Expected Behavior

In [14]: pdf.apply(udf, axis=1)
Out[14]: 
0   94 days 16:46:22
1                NaT
2                NaT
dtype: timedelta64[s]

Installed Versions

INSTALLED VERSIONS

commit : c2a7f1a
python : 3.10.10.final.0
python-bits : 64
OS : Linux
OS-release : 4.15.0-76-generic
Version : #86-Ubuntu SMP Fri Jan 17 17:24:28 UTC 2020
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 2.0.0rc1
numpy : 1.23.5
pytz : 2023.3
dateutil : 2.8.2
setuptools : 67.6.1
pip : 23.0.1
Cython : 0.29.33
pytest : 7.2.2
hypothesis : 6.70.1
sphinx : 5.3.0
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.12.0
pandas_datareader: None
bs4 : 4.12.0
bottleneck : None
brotli :
fastparquet : None
fsspec : 2023.3.0
gcsfs : None
matplotlib : None
numba : 0.56.4
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 11.0.0
pyreadstat : None
pyxlsb : None
s3fs : 2023.3.0
scipy : 1.10.1
snappy :
sqlalchemy : 1.4.46
tables : None
tabulate : 0.9.0
xarray : None
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    ApplyApply, Aggregate, Transform, MapBugNon-Nanodatetime64/timedelta64 with non-nanosecond resolution

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions